| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ne1 |
|- 0 =/= 1 |
| 2 |
|
ax-icn |
|- _i e. CC |
| 3 |
2 2
|
mulcli |
|- ( _i x. _i ) e. CC |
| 4 |
|
ax-1cn |
|- 1 e. CC |
| 5 |
3 4 4
|
addassi |
|- ( ( ( _i x. _i ) + 1 ) + 1 ) = ( ( _i x. _i ) + ( 1 + 1 ) ) |
| 6 |
5
|
a1i |
|- ( ( 0 = ( 0 + 0 ) /\ 1 = ( 1 + 1 ) ) -> ( ( ( _i x. _i ) + 1 ) + 1 ) = ( ( _i x. _i ) + ( 1 + 1 ) ) ) |
| 7 |
|
simpr |
|- ( ( 0 = ( 0 + 0 ) /\ 1 = ( 1 + 1 ) ) -> 1 = ( 1 + 1 ) ) |
| 8 |
7
|
oveq2d |
|- ( ( 0 = ( 0 + 0 ) /\ 1 = ( 1 + 1 ) ) -> ( ( _i x. _i ) + 1 ) = ( ( _i x. _i ) + ( 1 + 1 ) ) ) |
| 9 |
|
ax-i2m1 |
|- ( ( _i x. _i ) + 1 ) = 0 |
| 10 |
9
|
a1i |
|- ( ( 0 = ( 0 + 0 ) /\ 1 = ( 1 + 1 ) ) -> ( ( _i x. _i ) + 1 ) = 0 ) |
| 11 |
6 8 10
|
3eqtr2rd |
|- ( ( 0 = ( 0 + 0 ) /\ 1 = ( 1 + 1 ) ) -> 0 = ( ( ( _i x. _i ) + 1 ) + 1 ) ) |
| 12 |
|
simpl |
|- ( ( 0 = ( 0 + 0 ) /\ 1 = ( 1 + 1 ) ) -> 0 = ( 0 + 0 ) ) |
| 13 |
10
|
oveq1d |
|- ( ( 0 = ( 0 + 0 ) /\ 1 = ( 1 + 1 ) ) -> ( ( ( _i x. _i ) + 1 ) + 1 ) = ( 0 + 1 ) ) |
| 14 |
11 12 13
|
3eqtr3d |
|- ( ( 0 = ( 0 + 0 ) /\ 1 = ( 1 + 1 ) ) -> ( 0 + 0 ) = ( 0 + 1 ) ) |
| 15 |
|
0red |
|- ( ( 0 = ( 0 + 0 ) /\ 1 = ( 1 + 1 ) ) -> 0 e. RR ) |
| 16 |
|
1red |
|- ( ( 0 = ( 0 + 0 ) /\ 1 = ( 1 + 1 ) ) -> 1 e. RR ) |
| 17 |
|
readdcan |
|- ( ( 0 e. RR /\ 1 e. RR /\ 0 e. RR ) -> ( ( 0 + 0 ) = ( 0 + 1 ) <-> 0 = 1 ) ) |
| 18 |
15 16 15 17
|
syl3anc |
|- ( ( 0 = ( 0 + 0 ) /\ 1 = ( 1 + 1 ) ) -> ( ( 0 + 0 ) = ( 0 + 1 ) <-> 0 = 1 ) ) |
| 19 |
14 18
|
mpbid |
|- ( ( 0 = ( 0 + 0 ) /\ 1 = ( 1 + 1 ) ) -> 0 = 1 ) |
| 20 |
19
|
ex |
|- ( 0 = ( 0 + 0 ) -> ( 1 = ( 1 + 1 ) -> 0 = 1 ) ) |
| 21 |
20
|
necon3d |
|- ( 0 = ( 0 + 0 ) -> ( 0 =/= 1 -> 1 =/= ( 1 + 1 ) ) ) |
| 22 |
1 21
|
mpi |
|- ( 0 = ( 0 + 0 ) -> 1 =/= ( 1 + 1 ) ) |
| 23 |
|
oveq2 |
|- ( 1 = ( 1 + 1 ) -> ( 0 x. 1 ) = ( 0 x. ( 1 + 1 ) ) ) |
| 24 |
|
0re |
|- 0 e. RR |
| 25 |
|
ax-1rid |
|- ( 0 e. RR -> ( 0 x. 1 ) = 0 ) |
| 26 |
24 25
|
ax-mp |
|- ( 0 x. 1 ) = 0 |
| 27 |
|
0cn |
|- 0 e. CC |
| 28 |
27 4 4
|
adddii |
|- ( 0 x. ( 1 + 1 ) ) = ( ( 0 x. 1 ) + ( 0 x. 1 ) ) |
| 29 |
26 26
|
oveq12i |
|- ( ( 0 x. 1 ) + ( 0 x. 1 ) ) = ( 0 + 0 ) |
| 30 |
28 29
|
eqtri |
|- ( 0 x. ( 1 + 1 ) ) = ( 0 + 0 ) |
| 31 |
23 26 30
|
3eqtr3g |
|- ( 1 = ( 1 + 1 ) -> 0 = ( 0 + 0 ) ) |
| 32 |
31
|
necon3i |
|- ( 0 =/= ( 0 + 0 ) -> 1 =/= ( 1 + 1 ) ) |
| 33 |
22 32
|
pm2.61ine |
|- 1 =/= ( 1 + 1 ) |
| 34 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 35 |
33 34
|
neeqtrri |
|- 1 =/= 2 |