Step |
Hyp |
Ref |
Expression |
1 |
|
fltdvdsabdvdsc.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
2 |
|
fltdvdsabdvdsc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
3 |
|
fltdvdsabdvdsc.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
4 |
|
fltdvdsabdvdsc.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
5 |
|
fltdvdsabdvdsc.1 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) + ( 𝐵 ↑ 𝑁 ) ) = ( 𝐶 ↑ 𝑁 ) ) |
6 |
|
gcdnncl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
7 |
1 2 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
8 |
4
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
9 |
7 8
|
nnexpcld |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∈ ℕ ) |
10 |
9
|
nnzd |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∈ ℤ ) |
11 |
1 8
|
nnexpcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℕ ) |
12 |
11
|
nnzd |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
13 |
2 8
|
nnexpcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 𝑁 ) ∈ ℕ ) |
14 |
13
|
nnzd |
⊢ ( 𝜑 → ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) |
15 |
7
|
nnzd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
16 |
1
|
nnzd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
17 |
2
|
nnzd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
18 |
|
gcddvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
19 |
16 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
20 |
19
|
simpld |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
21 |
15 16 8 20
|
dvdsexpad |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ) |
22 |
19
|
simprd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
23 |
15 17 8 22
|
dvdsexpad |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) |
24 |
10 12 14 21 23
|
dvds2addd |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( ( 𝐴 ↑ 𝑁 ) + ( 𝐵 ↑ 𝑁 ) ) ) |
25 |
24 5
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐶 ↑ 𝑁 ) ) |
26 |
|
dvdsexpnn |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐶 ↑ 𝑁 ) ) ) |
27 |
7 3 4 26
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐶 ↑ 𝑁 ) ) ) |
28 |
25 27
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ) |