Metamath Proof Explorer


Theorem fltdvdsabdvdsc

Description: Any factor of both A and B also divides C . This establishes the validity of fltabcoprmex . (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses fltdvdsabdvdsc.a φA
fltdvdsabdvdsc.b φB
fltdvdsabdvdsc.c φC
fltdvdsabdvdsc.n φN
fltdvdsabdvdsc.1 φAN+BN=CN
Assertion fltdvdsabdvdsc φAgcdBC

Proof

Step Hyp Ref Expression
1 fltdvdsabdvdsc.a φA
2 fltdvdsabdvdsc.b φB
3 fltdvdsabdvdsc.c φC
4 fltdvdsabdvdsc.n φN
5 fltdvdsabdvdsc.1 φAN+BN=CN
6 gcdnncl ABAgcdB
7 1 2 6 syl2anc φAgcdB
8 4 nnnn0d φN0
9 7 8 nnexpcld φAgcdBN
10 9 nnzd φAgcdBN
11 1 8 nnexpcld φAN
12 11 nnzd φAN
13 2 8 nnexpcld φBN
14 13 nnzd φBN
15 7 nnzd φAgcdB
16 1 nnzd φA
17 2 nnzd φB
18 gcddvds ABAgcdBAAgcdBB
19 16 17 18 syl2anc φAgcdBAAgcdBB
20 19 simpld φAgcdBA
21 15 16 8 20 dvdsexpad φAgcdBNAN
22 19 simprd φAgcdBB
23 15 17 8 22 dvdsexpad φAgcdBNBN
24 10 12 14 21 23 dvds2addd φAgcdBNAN+BN
25 24 5 breqtrd φAgcdBNCN
26 dvdsexpnn AgcdBCNAgcdBCAgcdBNCN
27 7 3 4 26 syl3anc φAgcdBCAgcdBNCN
28 25 27 mpbird φAgcdBC