Metamath Proof Explorer


Theorem fltdvdsabdvdsc

Description: Any factor of both A and B also divides C . This establishes the validity of fltabcoprmex . (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses fltdvdsabdvdsc.a φ A
fltdvdsabdvdsc.b φ B
fltdvdsabdvdsc.c φ C
fltdvdsabdvdsc.n φ N
fltdvdsabdvdsc.1 φ A N + B N = C N
Assertion fltdvdsabdvdsc φ A gcd B C

Proof

Step Hyp Ref Expression
1 fltdvdsabdvdsc.a φ A
2 fltdvdsabdvdsc.b φ B
3 fltdvdsabdvdsc.c φ C
4 fltdvdsabdvdsc.n φ N
5 fltdvdsabdvdsc.1 φ A N + B N = C N
6 gcdnncl A B A gcd B
7 1 2 6 syl2anc φ A gcd B
8 4 nnnn0d φ N 0
9 7 8 nnexpcld φ A gcd B N
10 9 nnzd φ A gcd B N
11 1 8 nnexpcld φ A N
12 11 nnzd φ A N
13 2 8 nnexpcld φ B N
14 13 nnzd φ B N
15 7 nnzd φ A gcd B
16 1 nnzd φ A
17 2 nnzd φ B
18 gcddvds A B A gcd B A A gcd B B
19 16 17 18 syl2anc φ A gcd B A A gcd B B
20 19 simpld φ A gcd B A
21 15 16 8 20 dvdsexpad φ A gcd B N A N
22 19 simprd φ A gcd B B
23 15 17 8 22 dvdsexpad φ A gcd B N B N
24 10 12 14 21 23 dvds2addd φ A gcd B N A N + B N
25 24 5 breqtrd φ A gcd B N C N
26 dvdsexpnn A gcd B C N A gcd B C A gcd B N C N
27 7 3 4 26 syl3anc φ A gcd B C A gcd B N C N
28 25 27 mpbird φ A gcd B C