| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fltdvdsabdvdsc.a |
|- ( ph -> A e. NN ) |
| 2 |
|
fltdvdsabdvdsc.b |
|- ( ph -> B e. NN ) |
| 3 |
|
fltdvdsabdvdsc.c |
|- ( ph -> C e. NN ) |
| 4 |
|
fltdvdsabdvdsc.n |
|- ( ph -> N e. NN ) |
| 5 |
|
fltdvdsabdvdsc.1 |
|- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) |
| 6 |
|
gcdnncl |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN ) |
| 7 |
1 2 6
|
syl2anc |
|- ( ph -> ( A gcd B ) e. NN ) |
| 8 |
4
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 9 |
7 8
|
nnexpcld |
|- ( ph -> ( ( A gcd B ) ^ N ) e. NN ) |
| 10 |
9
|
nnzd |
|- ( ph -> ( ( A gcd B ) ^ N ) e. ZZ ) |
| 11 |
1 8
|
nnexpcld |
|- ( ph -> ( A ^ N ) e. NN ) |
| 12 |
11
|
nnzd |
|- ( ph -> ( A ^ N ) e. ZZ ) |
| 13 |
2 8
|
nnexpcld |
|- ( ph -> ( B ^ N ) e. NN ) |
| 14 |
13
|
nnzd |
|- ( ph -> ( B ^ N ) e. ZZ ) |
| 15 |
7
|
nnzd |
|- ( ph -> ( A gcd B ) e. ZZ ) |
| 16 |
1
|
nnzd |
|- ( ph -> A e. ZZ ) |
| 17 |
2
|
nnzd |
|- ( ph -> B e. ZZ ) |
| 18 |
|
gcddvds |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 19 |
16 17 18
|
syl2anc |
|- ( ph -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 20 |
19
|
simpld |
|- ( ph -> ( A gcd B ) || A ) |
| 21 |
15 16 8 20
|
dvdsexpad |
|- ( ph -> ( ( A gcd B ) ^ N ) || ( A ^ N ) ) |
| 22 |
19
|
simprd |
|- ( ph -> ( A gcd B ) || B ) |
| 23 |
15 17 8 22
|
dvdsexpad |
|- ( ph -> ( ( A gcd B ) ^ N ) || ( B ^ N ) ) |
| 24 |
10 12 14 21 23
|
dvds2addd |
|- ( ph -> ( ( A gcd B ) ^ N ) || ( ( A ^ N ) + ( B ^ N ) ) ) |
| 25 |
24 5
|
breqtrd |
|- ( ph -> ( ( A gcd B ) ^ N ) || ( C ^ N ) ) |
| 26 |
|
dvdsexpnn |
|- ( ( ( A gcd B ) e. NN /\ C e. NN /\ N e. NN ) -> ( ( A gcd B ) || C <-> ( ( A gcd B ) ^ N ) || ( C ^ N ) ) ) |
| 27 |
7 3 4 26
|
syl3anc |
|- ( ph -> ( ( A gcd B ) || C <-> ( ( A gcd B ) ^ N ) || ( C ^ N ) ) ) |
| 28 |
25 27
|
mpbird |
|- ( ph -> ( A gcd B ) || C ) |