Metamath Proof Explorer


Theorem fltabcoprmex

Description: A counterexample to FLT implies a counterexample to FLT with A , B (assigned to A / ( A gcd B ) and B / ( A gcd B ) ) coprime (by divgcdcoprm0 ). (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses fltabcoprmex.a
|- ( ph -> A e. NN )
fltabcoprmex.b
|- ( ph -> B e. NN )
fltabcoprmex.c
|- ( ph -> C e. NN )
fltabcoprmex.n
|- ( ph -> N e. NN0 )
fltabcoprmex.1
|- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) )
Assertion fltabcoprmex
|- ( ph -> ( ( ( A / ( A gcd B ) ) ^ N ) + ( ( B / ( A gcd B ) ) ^ N ) ) = ( ( C / ( A gcd B ) ) ^ N ) )

Proof

Step Hyp Ref Expression
1 fltabcoprmex.a
 |-  ( ph -> A e. NN )
2 fltabcoprmex.b
 |-  ( ph -> B e. NN )
3 fltabcoprmex.c
 |-  ( ph -> C e. NN )
4 fltabcoprmex.n
 |-  ( ph -> N e. NN0 )
5 fltabcoprmex.1
 |-  ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) )
6 gcdnncl
 |-  ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN )
7 1 2 6 syl2anc
 |-  ( ph -> ( A gcd B ) e. NN )
8 7 nncnd
 |-  ( ph -> ( A gcd B ) e. CC )
9 7 nnne0d
 |-  ( ph -> ( A gcd B ) =/= 0 )
10 1 nncnd
 |-  ( ph -> A e. CC )
11 2 nncnd
 |-  ( ph -> B e. CC )
12 3 nncnd
 |-  ( ph -> C e. CC )
13 8 9 10 11 12 4 5 fltdiv
 |-  ( ph -> ( ( ( A / ( A gcd B ) ) ^ N ) + ( ( B / ( A gcd B ) ) ^ N ) ) = ( ( C / ( A gcd B ) ) ^ N ) )