Description: A counterexample to FLT implies a counterexample to FLT with A , B (assigned to A / ( A gcd B ) and B / ( A gcd B ) ) coprime (by divgcdcoprm0 ). (Contributed by SN, 20-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fltabcoprmex.a | |- ( ph -> A e. NN ) |
|
fltabcoprmex.b | |- ( ph -> B e. NN ) |
||
fltabcoprmex.c | |- ( ph -> C e. NN ) |
||
fltabcoprmex.n | |- ( ph -> N e. NN0 ) |
||
fltabcoprmex.1 | |- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) |
||
Assertion | fltabcoprmex | |- ( ph -> ( ( ( A / ( A gcd B ) ) ^ N ) + ( ( B / ( A gcd B ) ) ^ N ) ) = ( ( C / ( A gcd B ) ) ^ N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fltabcoprmex.a | |- ( ph -> A e. NN ) |
|
2 | fltabcoprmex.b | |- ( ph -> B e. NN ) |
|
3 | fltabcoprmex.c | |- ( ph -> C e. NN ) |
|
4 | fltabcoprmex.n | |- ( ph -> N e. NN0 ) |
|
5 | fltabcoprmex.1 | |- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) |
|
6 | gcdnncl | |- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN ) |
|
7 | 1 2 6 | syl2anc | |- ( ph -> ( A gcd B ) e. NN ) |
8 | 7 | nncnd | |- ( ph -> ( A gcd B ) e. CC ) |
9 | 7 | nnne0d | |- ( ph -> ( A gcd B ) =/= 0 ) |
10 | 1 | nncnd | |- ( ph -> A e. CC ) |
11 | 2 | nncnd | |- ( ph -> B e. CC ) |
12 | 3 | nncnd | |- ( ph -> C e. CC ) |
13 | 8 9 10 11 12 4 5 | fltdiv | |- ( ph -> ( ( ( A / ( A gcd B ) ) ^ N ) + ( ( B / ( A gcd B ) ) ^ N ) ) = ( ( C / ( A gcd B ) ) ^ N ) ) |