Step |
Hyp |
Ref |
Expression |
1 |
|
fltdiv.s |
|- ( ph -> S e. CC ) |
2 |
|
fltdiv.0 |
|- ( ph -> S =/= 0 ) |
3 |
|
fltdiv.a |
|- ( ph -> A e. CC ) |
4 |
|
fltdiv.b |
|- ( ph -> B e. CC ) |
5 |
|
fltdiv.c |
|- ( ph -> C e. CC ) |
6 |
|
fltdiv.n |
|- ( ph -> N e. NN0 ) |
7 |
|
fltdiv.1 |
|- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) |
8 |
3 6
|
expcld |
|- ( ph -> ( A ^ N ) e. CC ) |
9 |
4 6
|
expcld |
|- ( ph -> ( B ^ N ) e. CC ) |
10 |
1 6
|
expcld |
|- ( ph -> ( S ^ N ) e. CC ) |
11 |
6
|
nn0zd |
|- ( ph -> N e. ZZ ) |
12 |
1 2 11
|
expne0d |
|- ( ph -> ( S ^ N ) =/= 0 ) |
13 |
8 9 10 12
|
divdird |
|- ( ph -> ( ( ( A ^ N ) + ( B ^ N ) ) / ( S ^ N ) ) = ( ( ( A ^ N ) / ( S ^ N ) ) + ( ( B ^ N ) / ( S ^ N ) ) ) ) |
14 |
7
|
oveq1d |
|- ( ph -> ( ( ( A ^ N ) + ( B ^ N ) ) / ( S ^ N ) ) = ( ( C ^ N ) / ( S ^ N ) ) ) |
15 |
13 14
|
eqtr3d |
|- ( ph -> ( ( ( A ^ N ) / ( S ^ N ) ) + ( ( B ^ N ) / ( S ^ N ) ) ) = ( ( C ^ N ) / ( S ^ N ) ) ) |
16 |
3 1 2 6
|
expdivd |
|- ( ph -> ( ( A / S ) ^ N ) = ( ( A ^ N ) / ( S ^ N ) ) ) |
17 |
4 1 2 6
|
expdivd |
|- ( ph -> ( ( B / S ) ^ N ) = ( ( B ^ N ) / ( S ^ N ) ) ) |
18 |
16 17
|
oveq12d |
|- ( ph -> ( ( ( A / S ) ^ N ) + ( ( B / S ) ^ N ) ) = ( ( ( A ^ N ) / ( S ^ N ) ) + ( ( B ^ N ) / ( S ^ N ) ) ) ) |
19 |
5 1 2 6
|
expdivd |
|- ( ph -> ( ( C / S ) ^ N ) = ( ( C ^ N ) / ( S ^ N ) ) ) |
20 |
15 18 19
|
3eqtr4d |
|- ( ph -> ( ( ( A / S ) ^ N ) + ( ( B / S ) ^ N ) ) = ( ( C / S ) ^ N ) ) |