Metamath Proof Explorer


Theorem fltdiv

Description: A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses fltdiv.s
|- ( ph -> S e. CC )
fltdiv.0
|- ( ph -> S =/= 0 )
fltdiv.a
|- ( ph -> A e. CC )
fltdiv.b
|- ( ph -> B e. CC )
fltdiv.c
|- ( ph -> C e. CC )
fltdiv.n
|- ( ph -> N e. NN0 )
fltdiv.1
|- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) )
Assertion fltdiv
|- ( ph -> ( ( ( A / S ) ^ N ) + ( ( B / S ) ^ N ) ) = ( ( C / S ) ^ N ) )

Proof

Step Hyp Ref Expression
1 fltdiv.s
 |-  ( ph -> S e. CC )
2 fltdiv.0
 |-  ( ph -> S =/= 0 )
3 fltdiv.a
 |-  ( ph -> A e. CC )
4 fltdiv.b
 |-  ( ph -> B e. CC )
5 fltdiv.c
 |-  ( ph -> C e. CC )
6 fltdiv.n
 |-  ( ph -> N e. NN0 )
7 fltdiv.1
 |-  ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) )
8 3 6 expcld
 |-  ( ph -> ( A ^ N ) e. CC )
9 4 6 expcld
 |-  ( ph -> ( B ^ N ) e. CC )
10 1 6 expcld
 |-  ( ph -> ( S ^ N ) e. CC )
11 6 nn0zd
 |-  ( ph -> N e. ZZ )
12 1 2 11 expne0d
 |-  ( ph -> ( S ^ N ) =/= 0 )
13 8 9 10 12 divdird
 |-  ( ph -> ( ( ( A ^ N ) + ( B ^ N ) ) / ( S ^ N ) ) = ( ( ( A ^ N ) / ( S ^ N ) ) + ( ( B ^ N ) / ( S ^ N ) ) ) )
14 7 oveq1d
 |-  ( ph -> ( ( ( A ^ N ) + ( B ^ N ) ) / ( S ^ N ) ) = ( ( C ^ N ) / ( S ^ N ) ) )
15 13 14 eqtr3d
 |-  ( ph -> ( ( ( A ^ N ) / ( S ^ N ) ) + ( ( B ^ N ) / ( S ^ N ) ) ) = ( ( C ^ N ) / ( S ^ N ) ) )
16 3 1 2 6 expdivd
 |-  ( ph -> ( ( A / S ) ^ N ) = ( ( A ^ N ) / ( S ^ N ) ) )
17 4 1 2 6 expdivd
 |-  ( ph -> ( ( B / S ) ^ N ) = ( ( B ^ N ) / ( S ^ N ) ) )
18 16 17 oveq12d
 |-  ( ph -> ( ( ( A / S ) ^ N ) + ( ( B / S ) ^ N ) ) = ( ( ( A ^ N ) / ( S ^ N ) ) + ( ( B ^ N ) / ( S ^ N ) ) ) )
19 5 1 2 6 expdivd
 |-  ( ph -> ( ( C / S ) ^ N ) = ( ( C ^ N ) / ( S ^ N ) ) )
20 15 18 19 3eqtr4d
 |-  ( ph -> ( ( ( A / S ) ^ N ) + ( ( B / S ) ^ N ) ) = ( ( C / S ) ^ N ) )