| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fltdiv.s |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
| 2 |
|
fltdiv.0 |
⊢ ( 𝜑 → 𝑆 ≠ 0 ) |
| 3 |
|
fltdiv.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 4 |
|
fltdiv.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 5 |
|
fltdiv.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 6 |
|
fltdiv.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 7 |
|
fltdiv.1 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) + ( 𝐵 ↑ 𝑁 ) ) = ( 𝐶 ↑ 𝑁 ) ) |
| 8 |
3 6
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| 9 |
4 6
|
expcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 𝑁 ) ∈ ℂ ) |
| 10 |
1 6
|
expcld |
⊢ ( 𝜑 → ( 𝑆 ↑ 𝑁 ) ∈ ℂ ) |
| 11 |
6
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 12 |
1 2 11
|
expne0d |
⊢ ( 𝜑 → ( 𝑆 ↑ 𝑁 ) ≠ 0 ) |
| 13 |
8 9 10 12
|
divdird |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 𝑁 ) + ( 𝐵 ↑ 𝑁 ) ) / ( 𝑆 ↑ 𝑁 ) ) = ( ( ( 𝐴 ↑ 𝑁 ) / ( 𝑆 ↑ 𝑁 ) ) + ( ( 𝐵 ↑ 𝑁 ) / ( 𝑆 ↑ 𝑁 ) ) ) ) |
| 14 |
7
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 𝑁 ) + ( 𝐵 ↑ 𝑁 ) ) / ( 𝑆 ↑ 𝑁 ) ) = ( ( 𝐶 ↑ 𝑁 ) / ( 𝑆 ↑ 𝑁 ) ) ) |
| 15 |
13 14
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 𝑁 ) / ( 𝑆 ↑ 𝑁 ) ) + ( ( 𝐵 ↑ 𝑁 ) / ( 𝑆 ↑ 𝑁 ) ) ) = ( ( 𝐶 ↑ 𝑁 ) / ( 𝑆 ↑ 𝑁 ) ) ) |
| 16 |
3 1 2 6
|
expdivd |
⊢ ( 𝜑 → ( ( 𝐴 / 𝑆 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝑆 ↑ 𝑁 ) ) ) |
| 17 |
4 1 2 6
|
expdivd |
⊢ ( 𝜑 → ( ( 𝐵 / 𝑆 ) ↑ 𝑁 ) = ( ( 𝐵 ↑ 𝑁 ) / ( 𝑆 ↑ 𝑁 ) ) ) |
| 18 |
16 17
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 / 𝑆 ) ↑ 𝑁 ) + ( ( 𝐵 / 𝑆 ) ↑ 𝑁 ) ) = ( ( ( 𝐴 ↑ 𝑁 ) / ( 𝑆 ↑ 𝑁 ) ) + ( ( 𝐵 ↑ 𝑁 ) / ( 𝑆 ↑ 𝑁 ) ) ) ) |
| 19 |
5 1 2 6
|
expdivd |
⊢ ( 𝜑 → ( ( 𝐶 / 𝑆 ) ↑ 𝑁 ) = ( ( 𝐶 ↑ 𝑁 ) / ( 𝑆 ↑ 𝑁 ) ) ) |
| 20 |
15 18 19
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐴 / 𝑆 ) ↑ 𝑁 ) + ( ( 𝐵 / 𝑆 ) ↑ 𝑁 ) ) = ( ( 𝐶 / 𝑆 ) ↑ 𝑁 ) ) |