| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flt0.a |
|- ( ph -> A e. CC ) |
| 2 |
|
flt0.b |
|- ( ph -> B e. CC ) |
| 3 |
|
flt0.c |
|- ( ph -> C e. CC ) |
| 4 |
|
flt0.n |
|- ( ph -> N e. NN0 ) |
| 5 |
|
flt0.1 |
|- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) |
| 6 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 7 |
|
sn-1ne2 |
|- 1 =/= 2 |
| 8 |
7
|
necomi |
|- 2 =/= 1 |
| 9 |
6 8
|
eqnetri |
|- ( 1 + 1 ) =/= 1 |
| 10 |
9
|
a1i |
|- ( ph -> ( 1 + 1 ) =/= 1 ) |
| 11 |
1
|
exp0d |
|- ( ph -> ( A ^ 0 ) = 1 ) |
| 12 |
2
|
exp0d |
|- ( ph -> ( B ^ 0 ) = 1 ) |
| 13 |
11 12
|
oveq12d |
|- ( ph -> ( ( A ^ 0 ) + ( B ^ 0 ) ) = ( 1 + 1 ) ) |
| 14 |
3
|
exp0d |
|- ( ph -> ( C ^ 0 ) = 1 ) |
| 15 |
10 13 14
|
3netr4d |
|- ( ph -> ( ( A ^ 0 ) + ( B ^ 0 ) ) =/= ( C ^ 0 ) ) |
| 16 |
|
oveq2 |
|- ( N = 0 -> ( A ^ N ) = ( A ^ 0 ) ) |
| 17 |
|
oveq2 |
|- ( N = 0 -> ( B ^ N ) = ( B ^ 0 ) ) |
| 18 |
16 17
|
oveq12d |
|- ( N = 0 -> ( ( A ^ N ) + ( B ^ N ) ) = ( ( A ^ 0 ) + ( B ^ 0 ) ) ) |
| 19 |
|
oveq2 |
|- ( N = 0 -> ( C ^ N ) = ( C ^ 0 ) ) |
| 20 |
18 19
|
eqeq12d |
|- ( N = 0 -> ( ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) <-> ( ( A ^ 0 ) + ( B ^ 0 ) ) = ( C ^ 0 ) ) ) |
| 21 |
5 20
|
syl5ibcom |
|- ( ph -> ( N = 0 -> ( ( A ^ 0 ) + ( B ^ 0 ) ) = ( C ^ 0 ) ) ) |
| 22 |
21
|
imp |
|- ( ( ph /\ N = 0 ) -> ( ( A ^ 0 ) + ( B ^ 0 ) ) = ( C ^ 0 ) ) |
| 23 |
15 22
|
mteqand |
|- ( ph -> N =/= 0 ) |
| 24 |
|
elnnne0 |
|- ( N e. NN <-> ( N e. NN0 /\ N =/= 0 ) ) |
| 25 |
4 23 24
|
sylanbrc |
|- ( ph -> N e. NN ) |