Metamath Proof Explorer


Theorem fltabcoprmex

Description: A counterexample to FLT implies a counterexample to FLT with A , B (assigned to A / ( A gcd B ) and B / ( A gcd B ) ) coprime (by divgcdcoprm0 ). (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses fltabcoprmex.a ( 𝜑𝐴 ∈ ℕ )
fltabcoprmex.b ( 𝜑𝐵 ∈ ℕ )
fltabcoprmex.c ( 𝜑𝐶 ∈ ℕ )
fltabcoprmex.n ( 𝜑𝑁 ∈ ℕ0 )
fltabcoprmex.1 ( 𝜑 → ( ( 𝐴𝑁 ) + ( 𝐵𝑁 ) ) = ( 𝐶𝑁 ) )
Assertion fltabcoprmex ( 𝜑 → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) ) = ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 fltabcoprmex.a ( 𝜑𝐴 ∈ ℕ )
2 fltabcoprmex.b ( 𝜑𝐵 ∈ ℕ )
3 fltabcoprmex.c ( 𝜑𝐶 ∈ ℕ )
4 fltabcoprmex.n ( 𝜑𝑁 ∈ ℕ0 )
5 fltabcoprmex.1 ( 𝜑 → ( ( 𝐴𝑁 ) + ( 𝐵𝑁 ) ) = ( 𝐶𝑁 ) )
6 gcdnncl ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ )
7 1 2 6 syl2anc ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℕ )
8 7 nncnd ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℂ )
9 7 nnne0d ( 𝜑 → ( 𝐴 gcd 𝐵 ) ≠ 0 )
10 1 nncnd ( 𝜑𝐴 ∈ ℂ )
11 2 nncnd ( 𝜑𝐵 ∈ ℂ )
12 3 nncnd ( 𝜑𝐶 ∈ ℂ )
13 8 9 10 11 12 4 5 fltdiv ( 𝜑 → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) ) = ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) )