| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fltabcoprmex.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
| 2 |
|
fltabcoprmex.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
| 3 |
|
fltabcoprmex.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
| 4 |
|
fltabcoprmex.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 5 |
|
fltabcoprmex.1 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) + ( 𝐵 ↑ 𝑁 ) ) = ( 𝐶 ↑ 𝑁 ) ) |
| 6 |
|
gcdnncl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
| 7 |
1 2 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
| 8 |
7
|
nncnd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 9 |
7
|
nnne0d |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 10 |
1
|
nncnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 11 |
2
|
nncnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 12 |
3
|
nncnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 13 |
8 9 10 11 12 4 5
|
fltdiv |
⊢ ( 𝜑 → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) ) = ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) ) |