| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fltabcoprmex.a |
|- ( ph -> A e. NN ) |
| 2 |
|
fltabcoprmex.b |
|- ( ph -> B e. NN ) |
| 3 |
|
fltabcoprmex.c |
|- ( ph -> C e. NN ) |
| 4 |
|
fltabcoprmex.n |
|- ( ph -> N e. NN0 ) |
| 5 |
|
fltabcoprmex.1 |
|- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) |
| 6 |
|
fltaccoprm.1 |
|- ( ph -> ( A gcd B ) = 1 ) |
| 7 |
|
coprmgcdb |
|- ( ( A e. NN /\ B e. NN ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) <-> ( A gcd B ) = 1 ) ) |
| 8 |
1 2 7
|
syl2anc |
|- ( ph -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) <-> ( A gcd B ) = 1 ) ) |
| 9 |
6 8
|
mpbird |
|- ( ph -> A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) ) |
| 10 |
|
simprl |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || C ) ) -> i || A ) |
| 11 |
|
simpr |
|- ( ( ph /\ i e. NN ) -> i e. NN ) |
| 12 |
11
|
nnzd |
|- ( ( ph /\ i e. NN ) -> i e. ZZ ) |
| 13 |
3
|
nnzd |
|- ( ph -> C e. ZZ ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ i e. NN ) -> C e. ZZ ) |
| 15 |
4
|
adantr |
|- ( ( ph /\ i e. NN ) -> N e. NN0 ) |
| 16 |
|
dvdsexpim |
|- ( ( i e. ZZ /\ C e. ZZ /\ N e. NN0 ) -> ( i || C -> ( i ^ N ) || ( C ^ N ) ) ) |
| 17 |
12 14 15 16
|
syl3anc |
|- ( ( ph /\ i e. NN ) -> ( i || C -> ( i ^ N ) || ( C ^ N ) ) ) |
| 18 |
1
|
nnzd |
|- ( ph -> A e. ZZ ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ i e. NN ) -> A e. ZZ ) |
| 20 |
|
dvdsexpim |
|- ( ( i e. ZZ /\ A e. ZZ /\ N e. NN0 ) -> ( i || A -> ( i ^ N ) || ( A ^ N ) ) ) |
| 21 |
12 19 15 20
|
syl3anc |
|- ( ( ph /\ i e. NN ) -> ( i || A -> ( i ^ N ) || ( A ^ N ) ) ) |
| 22 |
17 21
|
anim12d |
|- ( ( ph /\ i e. NN ) -> ( ( i || C /\ i || A ) -> ( ( i ^ N ) || ( C ^ N ) /\ ( i ^ N ) || ( A ^ N ) ) ) ) |
| 23 |
22
|
ancomsd |
|- ( ( ph /\ i e. NN ) -> ( ( i || A /\ i || C ) -> ( ( i ^ N ) || ( C ^ N ) /\ ( i ^ N ) || ( A ^ N ) ) ) ) |
| 24 |
23
|
imp |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || C ) ) -> ( ( i ^ N ) || ( C ^ N ) /\ ( i ^ N ) || ( A ^ N ) ) ) |
| 25 |
11 15
|
nnexpcld |
|- ( ( ph /\ i e. NN ) -> ( i ^ N ) e. NN ) |
| 26 |
25
|
nnzd |
|- ( ( ph /\ i e. NN ) -> ( i ^ N ) e. ZZ ) |
| 27 |
26
|
adantr |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || C ) ) -> ( i ^ N ) e. ZZ ) |
| 28 |
3 4
|
nnexpcld |
|- ( ph -> ( C ^ N ) e. NN ) |
| 29 |
28
|
nnzd |
|- ( ph -> ( C ^ N ) e. ZZ ) |
| 30 |
29
|
ad2antrr |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || C ) ) -> ( C ^ N ) e. ZZ ) |
| 31 |
1 4
|
nnexpcld |
|- ( ph -> ( A ^ N ) e. NN ) |
| 32 |
31
|
nnzd |
|- ( ph -> ( A ^ N ) e. ZZ ) |
| 33 |
32
|
ad2antrr |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || C ) ) -> ( A ^ N ) e. ZZ ) |
| 34 |
|
dvds2sub |
|- ( ( ( i ^ N ) e. ZZ /\ ( C ^ N ) e. ZZ /\ ( A ^ N ) e. ZZ ) -> ( ( ( i ^ N ) || ( C ^ N ) /\ ( i ^ N ) || ( A ^ N ) ) -> ( i ^ N ) || ( ( C ^ N ) - ( A ^ N ) ) ) ) |
| 35 |
27 30 33 34
|
syl3anc |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || C ) ) -> ( ( ( i ^ N ) || ( C ^ N ) /\ ( i ^ N ) || ( A ^ N ) ) -> ( i ^ N ) || ( ( C ^ N ) - ( A ^ N ) ) ) ) |
| 36 |
24 35
|
mpd |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || C ) ) -> ( i ^ N ) || ( ( C ^ N ) - ( A ^ N ) ) ) |
| 37 |
1
|
nncnd |
|- ( ph -> A e. CC ) |
| 38 |
37 4
|
expcld |
|- ( ph -> ( A ^ N ) e. CC ) |
| 39 |
2
|
nncnd |
|- ( ph -> B e. CC ) |
| 40 |
39 4
|
expcld |
|- ( ph -> ( B ^ N ) e. CC ) |
| 41 |
38 40 5
|
laddrotrd |
|- ( ph -> ( ( C ^ N ) - ( A ^ N ) ) = ( B ^ N ) ) |
| 42 |
41
|
ad2antrr |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || C ) ) -> ( ( C ^ N ) - ( A ^ N ) ) = ( B ^ N ) ) |
| 43 |
36 42
|
breqtrd |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || C ) ) -> ( i ^ N ) || ( B ^ N ) ) |
| 44 |
|
simplr |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || C ) ) -> i e. NN ) |
| 45 |
2
|
ad2antrr |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || C ) ) -> B e. NN ) |
| 46 |
3
|
nncnd |
|- ( ph -> C e. CC ) |
| 47 |
37 39 46 4 5
|
flt0 |
|- ( ph -> N e. NN ) |
| 48 |
47
|
ad2antrr |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || C ) ) -> N e. NN ) |
| 49 |
|
dvdsexpnn |
|- ( ( i e. NN /\ B e. NN /\ N e. NN ) -> ( i || B <-> ( i ^ N ) || ( B ^ N ) ) ) |
| 50 |
44 45 48 49
|
syl3anc |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || C ) ) -> ( i || B <-> ( i ^ N ) || ( B ^ N ) ) ) |
| 51 |
43 50
|
mpbird |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || C ) ) -> i || B ) |
| 52 |
10 51
|
jca |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || C ) ) -> ( i || A /\ i || B ) ) |
| 53 |
52
|
ex |
|- ( ( ph /\ i e. NN ) -> ( ( i || A /\ i || C ) -> ( i || A /\ i || B ) ) ) |
| 54 |
53
|
imim1d |
|- ( ( ph /\ i e. NN ) -> ( ( ( i || A /\ i || B ) -> i = 1 ) -> ( ( i || A /\ i || C ) -> i = 1 ) ) ) |
| 55 |
54
|
ralimdva |
|- ( ph -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) -> A. i e. NN ( ( i || A /\ i || C ) -> i = 1 ) ) ) |
| 56 |
9 55
|
mpd |
|- ( ph -> A. i e. NN ( ( i || A /\ i || C ) -> i = 1 ) ) |
| 57 |
|
coprmgcdb |
|- ( ( A e. NN /\ C e. NN ) -> ( A. i e. NN ( ( i || A /\ i || C ) -> i = 1 ) <-> ( A gcd C ) = 1 ) ) |
| 58 |
1 3 57
|
syl2anc |
|- ( ph -> ( A. i e. NN ( ( i || A /\ i || C ) -> i = 1 ) <-> ( A gcd C ) = 1 ) ) |
| 59 |
56 58
|
mpbid |
|- ( ph -> ( A gcd C ) = 1 ) |