Metamath Proof Explorer


Theorem laddrotrd

Description: Rotate the variables right in an equation with addition on the left, converting it into a subtraction. Version of mvlladdd with a commuted consequent, and of mvrladdd with a commuted hypothesis. (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses laddrotrd.a
|- ( ph -> A e. CC )
laddrotrd.b
|- ( ph -> B e. CC )
laddrotrd.1
|- ( ph -> ( A + B ) = C )
Assertion laddrotrd
|- ( ph -> ( C - A ) = B )

Proof

Step Hyp Ref Expression
1 laddrotrd.a
 |-  ( ph -> A e. CC )
2 laddrotrd.b
 |-  ( ph -> B e. CC )
3 laddrotrd.1
 |-  ( ph -> ( A + B ) = C )
4 1 2 3 mvlladdd
 |-  ( ph -> B = ( C - A ) )
5 4 eqcomd
 |-  ( ph -> ( C - A ) = B )