Metamath Proof Explorer


Theorem laddrotrd

Description: Rotate the variables right in an equation with addition on the left, converting it into a subtraction. Version of mvlladdd with a commuted consequent, and of mvrladdd with a commuted hypothesis. (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses laddrotrd.a φ A
laddrotrd.b φ B
laddrotrd.1 φ A + B = C
Assertion laddrotrd φ C A = B

Proof

Step Hyp Ref Expression
1 laddrotrd.a φ A
2 laddrotrd.b φ B
3 laddrotrd.1 φ A + B = C
4 1 2 3 mvlladdd φ B = C A
5 4 eqcomd φ C A = B