Metamath Proof Explorer


Theorem raddcom12d

Description: Swap the first two variables in an equation with addition on the right, converting it into a subtraction. Version of mvrraddd with a commuted consequent, and of mvlraddd with a commuted hypothesis. (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses raddcom12d.b φ B
raddcom12d.c φ C
raddcom12d.1 φ A = B + C
Assertion raddcom12d φ B = A C

Proof

Step Hyp Ref Expression
1 raddcom12d.b φ B
2 raddcom12d.c φ C
3 raddcom12d.1 φ A = B + C
4 1 2 3 mvrraddd φ A C = B
5 4 eqcomd φ B = A C