Metamath Proof Explorer


Theorem raddcom12d

Description: Swap the first two variables in an equation with addition on the right, converting it into a subtraction. Version of mvrraddd with a commuted consequent, and of mvlraddd with a commuted hypothesis. (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses raddcom12d.b ( 𝜑𝐵 ∈ ℂ )
raddcom12d.c ( 𝜑𝐶 ∈ ℂ )
raddcom12d.1 ( 𝜑𝐴 = ( 𝐵 + 𝐶 ) )
Assertion raddcom12d ( 𝜑𝐵 = ( 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 raddcom12d.b ( 𝜑𝐵 ∈ ℂ )
2 raddcom12d.c ( 𝜑𝐶 ∈ ℂ )
3 raddcom12d.1 ( 𝜑𝐴 = ( 𝐵 + 𝐶 ) )
4 1 2 3 mvrraddd ( 𝜑 → ( 𝐴𝐶 ) = 𝐵 )
5 4 eqcomd ( 𝜑𝐵 = ( 𝐴𝐶 ) )