Metamath Proof Explorer
Description: Rotate the variables left in an equation with subtraction on the left,
converting it into an addition. (Contributed by SN, 21-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
lsubrotld.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
lsubrotld.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
|
|
lsubrotld.1 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = 𝐶 ) |
|
Assertion |
lsubrotld |
⊢ ( 𝜑 → ( 𝐵 + 𝐶 ) = 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lsubrotld.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
lsubrotld.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
lsubrotld.1 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = 𝐶 ) |
4 |
1 2
|
subcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
5 |
3 4
|
eqeltrrd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
6 |
2 5
|
addcld |
⊢ ( 𝜑 → ( 𝐵 + 𝐶 ) ∈ ℂ ) |
7 |
2 5
|
pncan2d |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐶 ) − 𝐵 ) = 𝐶 ) |
8 |
7 3
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐶 ) − 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
9 |
6 1 2 8
|
subcan2d |
⊢ ( 𝜑 → ( 𝐵 + 𝐶 ) = 𝐴 ) |