Metamath Proof Explorer


Theorem lsubrotld

Description: Rotate the variables left in an equation with subtraction on the left, converting it into an addition. (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses lsubrotld.a ( 𝜑𝐴 ∈ ℂ )
lsubrotld.b ( 𝜑𝐵 ∈ ℂ )
lsubrotld.1 ( 𝜑 → ( 𝐴𝐵 ) = 𝐶 )
Assertion lsubrotld ( 𝜑 → ( 𝐵 + 𝐶 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 lsubrotld.a ( 𝜑𝐴 ∈ ℂ )
2 lsubrotld.b ( 𝜑𝐵 ∈ ℂ )
3 lsubrotld.1 ( 𝜑 → ( 𝐴𝐵 ) = 𝐶 )
4 1 2 subcld ( 𝜑 → ( 𝐴𝐵 ) ∈ ℂ )
5 3 4 eqeltrrd ( 𝜑𝐶 ∈ ℂ )
6 2 5 addcld ( 𝜑 → ( 𝐵 + 𝐶 ) ∈ ℂ )
7 2 5 pncan2d ( 𝜑 → ( ( 𝐵 + 𝐶 ) − 𝐵 ) = 𝐶 )
8 7 3 eqtr4d ( 𝜑 → ( ( 𝐵 + 𝐶 ) − 𝐵 ) = ( 𝐴𝐵 ) )
9 6 1 2 8 subcan2d ( 𝜑 → ( 𝐵 + 𝐶 ) = 𝐴 )