Metamath Proof Explorer


Theorem lsubrotld

Description: Rotate the variables left in an equation with subtraction on the left, converting it into an addition. (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses lsubrotld.a
|- ( ph -> A e. CC )
lsubrotld.b
|- ( ph -> B e. CC )
lsubrotld.1
|- ( ph -> ( A - B ) = C )
Assertion lsubrotld
|- ( ph -> ( B + C ) = A )

Proof

Step Hyp Ref Expression
1 lsubrotld.a
 |-  ( ph -> A e. CC )
2 lsubrotld.b
 |-  ( ph -> B e. CC )
3 lsubrotld.1
 |-  ( ph -> ( A - B ) = C )
4 1 2 subcld
 |-  ( ph -> ( A - B ) e. CC )
5 3 4 eqeltrrd
 |-  ( ph -> C e. CC )
6 2 5 addcld
 |-  ( ph -> ( B + C ) e. CC )
7 2 5 pncan2d
 |-  ( ph -> ( ( B + C ) - B ) = C )
8 7 3 eqtr4d
 |-  ( ph -> ( ( B + C ) - B ) = ( A - B ) )
9 6 1 2 8 subcan2d
 |-  ( ph -> ( B + C ) = A )