Step |
Hyp |
Ref |
Expression |
1 |
|
lsubcom23d.a |
|- ( ph -> A e. CC ) |
2 |
|
lsubcom23d.b |
|- ( ph -> B e. CC ) |
3 |
|
lsubcom23d.1 |
|- ( ph -> ( A - B ) = C ) |
4 |
1 2
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
5 |
3 4
|
eqeltrrd |
|- ( ph -> C e. CC ) |
6 |
1 5
|
subcld |
|- ( ph -> ( A - C ) e. CC ) |
7 |
4 3
|
subeq0bd |
|- ( ph -> ( ( A - B ) - C ) = 0 ) |
8 |
1 5 2
|
sub32d |
|- ( ph -> ( ( A - C ) - B ) = ( ( A - B ) - C ) ) |
9 |
2
|
subidd |
|- ( ph -> ( B - B ) = 0 ) |
10 |
7 8 9
|
3eqtr4d |
|- ( ph -> ( ( A - C ) - B ) = ( B - B ) ) |
11 |
6 2 2 10
|
subcan2d |
|- ( ph -> ( A - C ) = B ) |