Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Arithmetic theorems
lsubcom23d
Metamath Proof Explorer
Description: Swap the second and third variables in an equation with subtraction on
the left, converting it into an addition. (Contributed by SN , 23-Aug-2024)
Ref
Expression
Hypotheses
lsubcom23d.a
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
lsubcom23d.b
⊢ ( 𝜑 → 𝐵 ∈ ℂ )
lsubcom23d.1
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = 𝐶 )
Assertion
lsubcom23d
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
lsubcom23d.a
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
2
lsubcom23d.b
⊢ ( 𝜑 → 𝐵 ∈ ℂ )
3
lsubcom23d.1
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = 𝐶 )
4
1 2
subcld
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ )
5
3 4
eqeltrrd
⊢ ( 𝜑 → 𝐶 ∈ ℂ )
6
1 5
subcld
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) ∈ ℂ )
7
4 3
subeq0bd
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) − 𝐶 ) = 0 )
8
1 5 2
sub32d
⊢ ( 𝜑 → ( ( 𝐴 − 𝐶 ) − 𝐵 ) = ( ( 𝐴 − 𝐵 ) − 𝐶 ) )
9
2
subidd
⊢ ( 𝜑 → ( 𝐵 − 𝐵 ) = 0 )
10
7 8 9
3eqtr4d
⊢ ( 𝜑 → ( ( 𝐴 − 𝐶 ) − 𝐵 ) = ( 𝐵 − 𝐵 ) )
11
6 2 2 10
subcan2d
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = 𝐵 )