Description: Relation between sums and differences. (Contributed by Steven Nguyen, 5-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | addsubeq4com | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom | ⊢ ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐶 + 𝐷 ) = ( 𝐴 + 𝐵 ) ) | |
2 | addsubeq4 | ⊢ ( ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( ( 𝐶 + 𝐷 ) = ( 𝐴 + 𝐵 ) ↔ ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐵 ) ) ) | |
3 | 2 | ancoms | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐶 + 𝐷 ) = ( 𝐴 + 𝐵 ) ↔ ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐵 ) ) ) |
4 | 1 3 | syl5bb | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐵 ) ) ) |