Metamath Proof Explorer


Theorem addsubeq4com

Description: Relation between sums and differences. (Contributed by Steven Nguyen, 5-Jan-2023)

Ref Expression
Assertion addsubeq4com ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐴𝐶 ) = ( 𝐷𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 eqcom ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐶 + 𝐷 ) = ( 𝐴 + 𝐵 ) )
2 addsubeq4 ( ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( ( 𝐶 + 𝐷 ) = ( 𝐴 + 𝐵 ) ↔ ( 𝐴𝐶 ) = ( 𝐷𝐵 ) ) )
3 2 ancoms ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐶 + 𝐷 ) = ( 𝐴 + 𝐵 ) ↔ ( 𝐴𝐶 ) = ( 𝐷𝐵 ) ) )
4 1 3 syl5bb ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐴𝐶 ) = ( 𝐷𝐵 ) ) )