Metamath Proof Explorer


Theorem addsubeq4com

Description: Relation between sums and differences. (Contributed by Steven Nguyen, 5-Jan-2023)

Ref Expression
Assertion addsubeq4com
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) = ( C + D ) <-> ( A - C ) = ( D - B ) ) )

Proof

Step Hyp Ref Expression
1 eqcom
 |-  ( ( A + B ) = ( C + D ) <-> ( C + D ) = ( A + B ) )
2 addsubeq4
 |-  ( ( ( C e. CC /\ D e. CC ) /\ ( A e. CC /\ B e. CC ) ) -> ( ( C + D ) = ( A + B ) <-> ( A - C ) = ( D - B ) ) )
3 2 ancoms
 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( C + D ) = ( A + B ) <-> ( A - C ) = ( D - B ) ) )
4 1 3 syl5bb
 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) = ( C + D ) <-> ( A - C ) = ( D - B ) ) )