Description: Relation between sums and differences. (Contributed by Steven Nguyen, 5-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addsubeq4com | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) = ( C + D ) <-> ( A - C ) = ( D - B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | |- ( ( A + B ) = ( C + D ) <-> ( C + D ) = ( A + B ) ) |
|
| 2 | addsubeq4 | |- ( ( ( C e. CC /\ D e. CC ) /\ ( A e. CC /\ B e. CC ) ) -> ( ( C + D ) = ( A + B ) <-> ( A - C ) = ( D - B ) ) ) |
|
| 3 | 2 | ancoms | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( C + D ) = ( A + B ) <-> ( A - C ) = ( D - B ) ) ) |
| 4 | 1 3 | bitrid | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) = ( C + D ) <-> ( A - C ) = ( D - B ) ) ) |