Metamath Proof Explorer


Theorem sqsumi

Description: A sum squared. (Contributed by Steven Nguyen, 16-Sep-2022)

Ref Expression
Hypotheses sqsumi.1
|- A e. CC
sqsumi.2
|- B e. CC
Assertion sqsumi
|- ( ( A + B ) x. ( A + B ) ) = ( ( ( A x. A ) + ( B x. B ) ) + ( 2 x. ( A x. B ) ) )

Proof

Step Hyp Ref Expression
1 sqsumi.1
 |-  A e. CC
2 sqsumi.2
 |-  B e. CC
3 1 2 1 2 muladdi
 |-  ( ( A + B ) x. ( A + B ) ) = ( ( ( A x. A ) + ( B x. B ) ) + ( ( A x. B ) + ( A x. B ) ) )
4 1 2 mulcli
 |-  ( A x. B ) e. CC
5 4 2timesi
 |-  ( 2 x. ( A x. B ) ) = ( ( A x. B ) + ( A x. B ) )
6 5 eqcomi
 |-  ( ( A x. B ) + ( A x. B ) ) = ( 2 x. ( A x. B ) )
7 6 oveq2i
 |-  ( ( ( A x. A ) + ( B x. B ) ) + ( ( A x. B ) + ( A x. B ) ) ) = ( ( ( A x. A ) + ( B x. B ) ) + ( 2 x. ( A x. B ) ) )
8 3 7 eqtri
 |-  ( ( A + B ) x. ( A + B ) ) = ( ( ( A x. A ) + ( B x. B ) ) + ( 2 x. ( A x. B ) ) )