Step |
Hyp |
Ref |
Expression |
1 |
|
sqsumi.1 |
|- A e. CC |
2 |
|
sqsumi.2 |
|- B e. CC |
3 |
1 2 1 2
|
muladdi |
|- ( ( A + B ) x. ( A + B ) ) = ( ( ( A x. A ) + ( B x. B ) ) + ( ( A x. B ) + ( A x. B ) ) ) |
4 |
1 2
|
mulcli |
|- ( A x. B ) e. CC |
5 |
4
|
2timesi |
|- ( 2 x. ( A x. B ) ) = ( ( A x. B ) + ( A x. B ) ) |
6 |
5
|
eqcomi |
|- ( ( A x. B ) + ( A x. B ) ) = ( 2 x. ( A x. B ) ) |
7 |
6
|
oveq2i |
|- ( ( ( A x. A ) + ( B x. B ) ) + ( ( A x. B ) + ( A x. B ) ) ) = ( ( ( A x. A ) + ( B x. B ) ) + ( 2 x. ( A x. B ) ) ) |
8 |
3 7
|
eqtri |
|- ( ( A + B ) x. ( A + B ) ) = ( ( ( A x. A ) + ( B x. B ) ) + ( 2 x. ( A x. B ) ) ) |