Metamath Proof Explorer


Theorem negn0nposznnd

Description: Lemma for dffltz . (Contributed by Steven Nguyen, 27-Feb-2023)

Ref Expression
Hypotheses negn0nposznnd.1
|- ( ph -> A =/= 0 )
negn0nposznnd.2
|- ( ph -> -. 0 < A )
negn0nposznnd.3
|- ( ph -> A e. ZZ )
Assertion negn0nposznnd
|- ( ph -> -u A e. NN )

Proof

Step Hyp Ref Expression
1 negn0nposznnd.1
 |-  ( ph -> A =/= 0 )
2 negn0nposznnd.2
 |-  ( ph -> -. 0 < A )
3 negn0nposznnd.3
 |-  ( ph -> A e. ZZ )
4 nngt0
 |-  ( A e. NN -> 0 < A )
5 2 4 nsyl
 |-  ( ph -> -. A e. NN )
6 1 neneqd
 |-  ( ph -> -. A = 0 )
7 5 6 jca
 |-  ( ph -> ( -. A e. NN /\ -. A = 0 ) )
8 pm4.56
 |-  ( ( -. A e. NN /\ -. A = 0 ) <-> -. ( A e. NN \/ A = 0 ) )
9 7 8 sylib
 |-  ( ph -> -. ( A e. NN \/ A = 0 ) )
10 elnn0
 |-  ( A e. NN0 <-> ( A e. NN \/ A = 0 ) )
11 9 10 sylnibr
 |-  ( ph -> -. A e. NN0 )
12 znnn0nn
 |-  ( ( A e. ZZ /\ -. A e. NN0 ) -> -u A e. NN )
13 3 11 12 syl2anc
 |-  ( ph -> -u A e. NN )