Description: Lemma for dffltz . (Contributed by Steven Nguyen, 27-Feb-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | negn0nposznnd.1 | |- ( ph -> A =/= 0 ) |
|
negn0nposznnd.2 | |- ( ph -> -. 0 < A ) |
||
negn0nposznnd.3 | |- ( ph -> A e. ZZ ) |
||
Assertion | negn0nposznnd | |- ( ph -> -u A e. NN ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negn0nposznnd.1 | |- ( ph -> A =/= 0 ) |
|
2 | negn0nposznnd.2 | |- ( ph -> -. 0 < A ) |
|
3 | negn0nposznnd.3 | |- ( ph -> A e. ZZ ) |
|
4 | nngt0 | |- ( A e. NN -> 0 < A ) |
|
5 | 2 4 | nsyl | |- ( ph -> -. A e. NN ) |
6 | 1 | neneqd | |- ( ph -> -. A = 0 ) |
7 | 5 6 | jca | |- ( ph -> ( -. A e. NN /\ -. A = 0 ) ) |
8 | pm4.56 | |- ( ( -. A e. NN /\ -. A = 0 ) <-> -. ( A e. NN \/ A = 0 ) ) |
|
9 | 7 8 | sylib | |- ( ph -> -. ( A e. NN \/ A = 0 ) ) |
10 | elnn0 | |- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) |
|
11 | 9 10 | sylnibr | |- ( ph -> -. A e. NN0 ) |
12 | znnn0nn | |- ( ( A e. ZZ /\ -. A e. NN0 ) -> -u A e. NN ) |
|
13 | 3 11 12 | syl2anc | |- ( ph -> -u A e. NN ) |