Metamath Proof Explorer


Theorem negn0nposznnd

Description: Lemma for dffltz . (Contributed by Steven Nguyen, 27-Feb-2023)

Ref Expression
Hypotheses negn0nposznnd.1 φ A 0
negn0nposznnd.2 φ ¬ 0 < A
negn0nposznnd.3 φ A
Assertion negn0nposznnd φ A

Proof

Step Hyp Ref Expression
1 negn0nposznnd.1 φ A 0
2 negn0nposznnd.2 φ ¬ 0 < A
3 negn0nposznnd.3 φ A
4 nngt0 A 0 < A
5 2 4 nsyl φ ¬ A
6 1 neneqd φ ¬ A = 0
7 5 6 jca φ ¬ A ¬ A = 0
8 pm4.56 ¬ A ¬ A = 0 ¬ A A = 0
9 7 8 sylib φ ¬ A A = 0
10 elnn0 A 0 A A = 0
11 9 10 sylnibr φ ¬ A 0
12 znnn0nn A ¬ A 0 A
13 3 11 12 syl2anc φ A