Step |
Hyp |
Ref |
Expression |
1 |
|
negn0nposznnd.1 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
2 |
|
negn0nposznnd.2 |
⊢ ( 𝜑 → ¬ 0 < 𝐴 ) |
3 |
|
negn0nposznnd.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
4 |
|
nngt0 |
⊢ ( 𝐴 ∈ ℕ → 0 < 𝐴 ) |
5 |
2 4
|
nsyl |
⊢ ( 𝜑 → ¬ 𝐴 ∈ ℕ ) |
6 |
1
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐴 = 0 ) |
7 |
5 6
|
jca |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ ℕ ∧ ¬ 𝐴 = 0 ) ) |
8 |
|
pm4.56 |
⊢ ( ( ¬ 𝐴 ∈ ℕ ∧ ¬ 𝐴 = 0 ) ↔ ¬ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
9 |
7 8
|
sylib |
⊢ ( 𝜑 → ¬ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
10 |
|
elnn0 |
⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
11 |
9 10
|
sylnibr |
⊢ ( 𝜑 → ¬ 𝐴 ∈ ℕ0 ) |
12 |
|
znnn0nn |
⊢ ( ( 𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ0 ) → - 𝐴 ∈ ℕ ) |
13 |
3 11 12
|
syl2anc |
⊢ ( 𝜑 → - 𝐴 ∈ ℕ ) |