Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑥 = if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) → ( 𝑥 ↑ 𝑛 ) = ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) ) |
2 |
1
|
oveq1d |
⊢ ( 𝑥 = if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) → ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ) |
3 |
2
|
eqeq1d |
⊢ ( 𝑥 = if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) → ( ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ↔ ( ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ) ) |
4 |
|
oveq1 |
⊢ ( 𝑦 = if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) → ( 𝑦 ↑ 𝑛 ) = ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) ↑ 𝑛 ) ) |
5 |
4
|
oveq2d |
⊢ ( 𝑦 = if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) → ( ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) + ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) ↑ 𝑛 ) ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑦 = if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) → ( ( ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ↔ ( ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) + ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑧 = if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑐 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ) → ( 𝑧 ↑ 𝑛 ) = ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑐 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ) ↑ 𝑛 ) ) |
8 |
7
|
eqeq2d |
⊢ ( 𝑧 = if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑐 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ) → ( ( ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) + ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ↔ ( ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) + ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) ↑ 𝑛 ) ) = ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑐 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ) ↑ 𝑛 ) ) ) |
9 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) → 𝑎 ∈ ( ℤ ∖ { 0 } ) ) |
10 |
|
eldifi |
⊢ ( 𝑎 ∈ ( ℤ ∖ { 0 } ) → 𝑎 ∈ ℤ ) |
11 |
|
eldifsni |
⊢ ( 𝑎 ∈ ( ℤ ∖ { 0 } ) → 𝑎 ≠ 0 ) |
12 |
10 11
|
jca |
⊢ ( 𝑎 ∈ ( ℤ ∖ { 0 } ) → ( 𝑎 ∈ ℤ ∧ 𝑎 ≠ 0 ) ) |
13 |
|
nnabscl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑎 ≠ 0 ) → ( abs ‘ 𝑎 ) ∈ ℕ ) |
14 |
9 12 13
|
3syl |
⊢ ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) → ( abs ‘ 𝑎 ) ∈ ℕ ) |
15 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑎 ∈ ( ℤ ∖ { 0 } ) ) |
16 |
15
|
eldifad |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑎 ∈ ℤ ) |
17 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 0 < 𝑎 ) |
18 |
|
elnnz |
⊢ ( 𝑎 ∈ ℕ ↔ ( 𝑎 ∈ ℤ ∧ 0 < 𝑎 ) ) |
19 |
16 17 18
|
sylanbrc |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑎 ∈ ℕ ) |
20 |
|
eldifsni |
⊢ ( 𝑏 ∈ ( ℤ ∖ { 0 } ) → 𝑏 ≠ 0 ) |
21 |
20
|
ad6antlr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑏 ≠ 0 ) |
22 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ¬ 0 < 𝑏 ) |
23 |
|
eldifi |
⊢ ( 𝑏 ∈ ( ℤ ∖ { 0 } ) → 𝑏 ∈ ℤ ) |
24 |
23
|
ad6antlr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑏 ∈ ℤ ) |
25 |
21 22 24
|
negn0nposznnd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → - 𝑏 ∈ ℕ ) |
26 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑎 ∈ ( ℤ ∖ { 0 } ) ) |
27 |
26
|
eldifad |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑎 ∈ ℤ ) |
28 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 0 < 𝑎 ) |
29 |
27 28 18
|
sylanbrc |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑎 ∈ ℕ ) |
30 |
25 29
|
ifclda |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ∈ ℕ ) |
31 |
19 30
|
ifclda |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) → if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) ∈ ℕ ) |
32 |
11
|
ad7antlr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑎 ≠ 0 ) |
33 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ¬ 0 < 𝑎 ) |
34 |
10
|
ad7antlr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑎 ∈ ℤ ) |
35 |
32 33 34
|
negn0nposznnd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → - 𝑎 ∈ ℕ ) |
36 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑏 ∈ ( ℤ ∖ { 0 } ) ) |
37 |
36
|
eldifad |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑏 ∈ ℤ ) |
38 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 0 < 𝑏 ) |
39 |
|
elnnz |
⊢ ( 𝑏 ∈ ℕ ↔ ( 𝑏 ∈ ℤ ∧ 0 < 𝑏 ) ) |
40 |
37 38 39
|
sylanbrc |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑏 ∈ ℕ ) |
41 |
35 40
|
ifclda |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) ∈ ℕ ) |
42 |
11
|
ad6antlr |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑎 ≠ 0 ) |
43 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ 0 < 𝑎 ) |
44 |
10
|
ad6antlr |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑎 ∈ ℤ ) |
45 |
42 43 44
|
negn0nposznnd |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → - 𝑎 ∈ ℕ ) |
46 |
41 45
|
ifclda |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) → if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ∈ ℕ ) |
47 |
31 46
|
ifclda |
⊢ ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) → if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ∈ ℕ ) |
48 |
14 47
|
ifcld |
⊢ ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) → if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ∈ ℕ ) |
49 |
|
simpllr |
⊢ ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) → 𝑏 ∈ ( ℤ ∖ { 0 } ) ) |
50 |
23 20
|
jca |
⊢ ( 𝑏 ∈ ( ℤ ∖ { 0 } ) → ( 𝑏 ∈ ℤ ∧ 𝑏 ≠ 0 ) ) |
51 |
|
nnabscl |
⊢ ( ( 𝑏 ∈ ℤ ∧ 𝑏 ≠ 0 ) → ( abs ‘ 𝑏 ) ∈ ℕ ) |
52 |
49 50 51
|
3syl |
⊢ ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) → ( abs ‘ 𝑏 ) ∈ ℕ ) |
53 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑏 ∈ ( ℤ ∖ { 0 } ) ) |
54 |
53
|
eldifad |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑏 ∈ ℤ ) |
55 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 0 < 𝑏 ) |
56 |
54 55 39
|
sylanbrc |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑏 ∈ ℕ ) |
57 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑐 ∈ ( ℤ ∖ { 0 } ) ) |
58 |
57
|
eldifad |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑐 ∈ ℤ ) |
59 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 0 < 𝑐 ) |
60 |
|
elnnz |
⊢ ( 𝑐 ∈ ℕ ↔ ( 𝑐 ∈ ℤ ∧ 0 < 𝑐 ) ) |
61 |
58 59 60
|
sylanbrc |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑐 ∈ ℕ ) |
62 |
|
eldifsni |
⊢ ( 𝑐 ∈ ( ℤ ∖ { 0 } ) → 𝑐 ≠ 0 ) |
63 |
62
|
ad5antlr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑐 ≠ 0 ) |
64 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ¬ 0 < 𝑐 ) |
65 |
|
eldifi |
⊢ ( 𝑐 ∈ ( ℤ ∖ { 0 } ) → 𝑐 ∈ ℤ ) |
66 |
65
|
ad5antlr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑐 ∈ ℤ ) |
67 |
63 64 66
|
negn0nposznnd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → - 𝑐 ∈ ℕ ) |
68 |
61 67
|
ifclda |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ∈ ℕ ) |
69 |
56 68
|
ifclda |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ 0 < 𝑎 ) → if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) ∈ ℕ ) |
70 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑐 ∈ ( ℤ ∖ { 0 } ) ) |
71 |
70
|
eldifad |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑐 ∈ ℤ ) |
72 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 0 < 𝑐 ) |
73 |
71 72 60
|
sylanbrc |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑐 ∈ ℕ ) |
74 |
62
|
ad5antlr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑐 ≠ 0 ) |
75 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ¬ 0 < 𝑐 ) |
76 |
65
|
ad5antlr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑐 ∈ ℤ ) |
77 |
74 75 76
|
negn0nposznnd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → - 𝑐 ∈ ℕ ) |
78 |
73 77
|
ifclda |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ∈ ℕ ) |
79 |
20
|
ad5antlr |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑏 ≠ 0 ) |
80 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ 0 < 𝑏 ) |
81 |
23
|
ad5antlr |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑏 ∈ ℤ ) |
82 |
79 80 81
|
negn0nposznnd |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → - 𝑏 ∈ ℕ ) |
83 |
78 82
|
ifclda |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ 0 < 𝑎 ) → if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ∈ ℕ ) |
84 |
69 83
|
ifclda |
⊢ ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) → if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ∈ ℕ ) |
85 |
52 84
|
ifcld |
⊢ ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) → if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) ∈ ℕ ) |
86 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑐 ∈ ( ℤ ∖ { 0 } ) ) |
87 |
86
|
eldifad |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑐 ∈ ℤ ) |
88 |
86 62
|
syl |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑐 ≠ 0 ) |
89 |
|
nnabscl |
⊢ ( ( 𝑐 ∈ ℤ ∧ 𝑐 ≠ 0 ) → ( abs ‘ 𝑐 ) ∈ ℕ ) |
90 |
87 88 89
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( abs ‘ 𝑐 ) ∈ ℕ ) |
91 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑐 ∈ ( ℤ ∖ { 0 } ) ) |
92 |
91
|
eldifad |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑐 ∈ ℤ ) |
93 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑎 ∈ ( ℤ ∖ { 0 } ) ) |
94 |
93
|
eldifad |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑎 ∈ ℤ ) |
95 |
94
|
zred |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑎 ∈ ℝ ) |
96 |
|
eluzge3nn |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) → 𝑛 ∈ ℕ ) |
97 |
96
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑛 ∈ ℕ ) |
98 |
97
|
nnnn0d |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑛 ∈ ℕ0 ) |
99 |
95 98
|
reexpcld |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → ( 𝑎 ↑ 𝑛 ) ∈ ℝ ) |
100 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑏 ∈ ( ℤ ∖ { 0 } ) ) |
101 |
100
|
eldifad |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑏 ∈ ℤ ) |
102 |
101
|
zred |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑏 ∈ ℝ ) |
103 |
102 98
|
reexpcld |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → ( 𝑏 ↑ 𝑛 ) ∈ ℝ ) |
104 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 0 < 𝑎 ) |
105 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → ¬ ( 𝑛 / 2 ) ∈ ℕ ) |
106 |
95 97 105
|
oexpreposd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → ( 0 < 𝑎 ↔ 0 < ( 𝑎 ↑ 𝑛 ) ) ) |
107 |
104 106
|
mpbid |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 0 < ( 𝑎 ↑ 𝑛 ) ) |
108 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 0 < 𝑏 ) |
109 |
102 97 105
|
oexpreposd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → ( 0 < 𝑏 ↔ 0 < ( 𝑏 ↑ 𝑛 ) ) ) |
110 |
108 109
|
mpbid |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 0 < ( 𝑏 ↑ 𝑛 ) ) |
111 |
99 103 107 110
|
addgt0d |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 0 < ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ) |
112 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) |
113 |
111 112
|
breqtrd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 0 < ( 𝑐 ↑ 𝑛 ) ) |
114 |
92
|
zred |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑐 ∈ ℝ ) |
115 |
114 97 105
|
oexpreposd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → ( 0 < 𝑐 ↔ 0 < ( 𝑐 ↑ 𝑛 ) ) ) |
116 |
113 115
|
mpbird |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 0 < 𝑐 ) |
117 |
92 116 60
|
sylanbrc |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → 𝑐 ∈ ℕ ) |
118 |
|
simp-8r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑎 ∈ ( ℤ ∖ { 0 } ) ) |
119 |
118
|
eldifad |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑎 ∈ ℤ ) |
120 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 0 < 𝑎 ) |
121 |
119 120 18
|
sylanbrc |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑎 ∈ ℕ ) |
122 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑏 ∈ ( ℤ ∖ { 0 } ) ) |
123 |
122 20
|
syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑏 ≠ 0 ) |
124 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ¬ 0 < 𝑏 ) |
125 |
122
|
eldifad |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑏 ∈ ℤ ) |
126 |
123 124 125
|
negn0nposznnd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → - 𝑏 ∈ ℕ ) |
127 |
121 126
|
ifclda |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ∈ ℕ ) |
128 |
117 127
|
ifclda |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) → if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) ∈ ℕ ) |
129 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑏 ∈ ( ℤ ∖ { 0 } ) ) |
130 |
129
|
eldifad |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑏 ∈ ℤ ) |
131 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 0 < 𝑏 ) |
132 |
130 131 39
|
sylanbrc |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑏 ∈ ℕ ) |
133 |
|
simp-8r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑎 ∈ ( ℤ ∖ { 0 } ) ) |
134 |
133 11
|
syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑎 ≠ 0 ) |
135 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ¬ 0 < 𝑎 ) |
136 |
133
|
eldifad |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑎 ∈ ℤ ) |
137 |
134 135 136
|
negn0nposznnd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → - 𝑎 ∈ ℕ ) |
138 |
132 137
|
ifclda |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) ∈ ℕ ) |
139 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑐 ∈ ( ℤ ∖ { 0 } ) ) |
140 |
139 62
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑐 ≠ 0 ) |
141 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑎 ∈ ( ℤ ∖ { 0 } ) ) |
142 |
141
|
eldifad |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑎 ∈ ℤ ) |
143 |
142
|
zred |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑎 ∈ ℝ ) |
144 |
96
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑛 ∈ ℕ ) |
145 |
144
|
nnnn0d |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑛 ∈ ℕ0 ) |
146 |
143 145
|
reexpcld |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( 𝑎 ↑ 𝑛 ) ∈ ℝ ) |
147 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑏 ∈ ( ℤ ∖ { 0 } ) ) |
148 |
147
|
eldifad |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑏 ∈ ℤ ) |
149 |
148
|
zred |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑏 ∈ ℝ ) |
150 |
149 145
|
reexpcld |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( 𝑏 ↑ 𝑛 ) ∈ ℝ ) |
151 |
146 150
|
readdcld |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ∈ ℝ ) |
152 |
|
0red |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 0 ∈ ℝ ) |
153 |
11
|
neneqd |
⊢ ( 𝑎 ∈ ( ℤ ∖ { 0 } ) → ¬ 𝑎 = 0 ) |
154 |
141 153
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ 𝑎 = 0 ) |
155 |
|
zcn |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℂ ) |
156 |
141 10 155
|
3syl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑎 ∈ ℂ ) |
157 |
|
expeq0 |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → ( ( 𝑎 ↑ 𝑛 ) = 0 ↔ 𝑎 = 0 ) ) |
158 |
156 144 157
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( ( 𝑎 ↑ 𝑛 ) = 0 ↔ 𝑎 = 0 ) ) |
159 |
154 158
|
mtbird |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ ( 𝑎 ↑ 𝑛 ) = 0 ) |
160 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ 0 < 𝑎 ) |
161 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ ( 𝑛 / 2 ) ∈ ℕ ) |
162 |
143 144 161
|
oexpreposd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( 0 < 𝑎 ↔ 0 < ( 𝑎 ↑ 𝑛 ) ) ) |
163 |
160 162
|
mtbid |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ 0 < ( 𝑎 ↑ 𝑛 ) ) |
164 |
|
ioran |
⊢ ( ¬ ( ( 𝑎 ↑ 𝑛 ) = 0 ∨ 0 < ( 𝑎 ↑ 𝑛 ) ) ↔ ( ¬ ( 𝑎 ↑ 𝑛 ) = 0 ∧ ¬ 0 < ( 𝑎 ↑ 𝑛 ) ) ) |
165 |
159 163 164
|
sylanbrc |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ ( ( 𝑎 ↑ 𝑛 ) = 0 ∨ 0 < ( 𝑎 ↑ 𝑛 ) ) ) |
166 |
146 152
|
lttrid |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( ( 𝑎 ↑ 𝑛 ) < 0 ↔ ¬ ( ( 𝑎 ↑ 𝑛 ) = 0 ∨ 0 < ( 𝑎 ↑ 𝑛 ) ) ) ) |
167 |
165 166
|
mpbird |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( 𝑎 ↑ 𝑛 ) < 0 ) |
168 |
|
zcn |
⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℂ ) |
169 |
147 23 168
|
3syl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑏 ∈ ℂ ) |
170 |
147 20
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑏 ≠ 0 ) |
171 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) → 𝑛 ∈ ℤ ) |
172 |
171
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑛 ∈ ℤ ) |
173 |
169 170 172
|
expne0d |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( 𝑏 ↑ 𝑛 ) ≠ 0 ) |
174 |
173
|
neneqd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ ( 𝑏 ↑ 𝑛 ) = 0 ) |
175 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ 0 < 𝑏 ) |
176 |
149 144 161
|
oexpreposd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( 0 < 𝑏 ↔ 0 < ( 𝑏 ↑ 𝑛 ) ) ) |
177 |
175 176
|
mtbid |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ 0 < ( 𝑏 ↑ 𝑛 ) ) |
178 |
|
ioran |
⊢ ( ¬ ( ( 𝑏 ↑ 𝑛 ) = 0 ∨ 0 < ( 𝑏 ↑ 𝑛 ) ) ↔ ( ¬ ( 𝑏 ↑ 𝑛 ) = 0 ∧ ¬ 0 < ( 𝑏 ↑ 𝑛 ) ) ) |
179 |
174 177 178
|
sylanbrc |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ ( ( 𝑏 ↑ 𝑛 ) = 0 ∨ 0 < ( 𝑏 ↑ 𝑛 ) ) ) |
180 |
150 152
|
lttrid |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( ( 𝑏 ↑ 𝑛 ) < 0 ↔ ¬ ( ( 𝑏 ↑ 𝑛 ) = 0 ∨ 0 < ( 𝑏 ↑ 𝑛 ) ) ) ) |
181 |
179 180
|
mpbird |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( 𝑏 ↑ 𝑛 ) < 0 ) |
182 |
146 150 152 152 167 181
|
lt2addd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) < ( 0 + 0 ) ) |
183 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
184 |
182 183
|
breqtrdi |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) < 0 ) |
185 |
151 152 184
|
ltnsymd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ 0 < ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ) |
186 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) |
187 |
186
|
eqcomd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( 𝑐 ↑ 𝑛 ) = ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ) |
188 |
187
|
breq2d |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( 0 < ( 𝑐 ↑ 𝑛 ) ↔ 0 < ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ) ) |
189 |
185 188
|
mtbird |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ 0 < ( 𝑐 ↑ 𝑛 ) ) |
190 |
139
|
eldifad |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑐 ∈ ℤ ) |
191 |
190
|
zred |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑐 ∈ ℝ ) |
192 |
191 144 161
|
oexpreposd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( 0 < 𝑐 ↔ 0 < ( 𝑐 ↑ 𝑛 ) ) ) |
193 |
189 192
|
mtbird |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ 0 < 𝑐 ) |
194 |
140 193 190
|
negn0nposznnd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → - 𝑐 ∈ ℕ ) |
195 |
138 194
|
ifclda |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) → if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ∈ ℕ ) |
196 |
128 195
|
ifclda |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) → if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ∈ ℕ ) |
197 |
90 196
|
ifclda |
⊢ ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) → if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑐 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ) ∈ ℕ ) |
198 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) |
199 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑎 ∈ ( ℤ ∖ { 0 } ) ) |
200 |
199
|
eldifad |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑎 ∈ ℤ ) |
201 |
200
|
zred |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑎 ∈ ℝ ) |
202 |
|
absresq |
⊢ ( 𝑎 ∈ ℝ → ( ( abs ‘ 𝑎 ) ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
203 |
201 202
|
syl |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( abs ‘ 𝑎 ) ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
204 |
203
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( ( abs ‘ 𝑎 ) ↑ 2 ) ↑ ( 𝑛 / 2 ) ) = ( ( 𝑎 ↑ 2 ) ↑ ( 𝑛 / 2 ) ) ) |
205 |
199 10 155
|
3syl |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑎 ∈ ℂ ) |
206 |
205
|
abscld |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( abs ‘ 𝑎 ) ∈ ℝ ) |
207 |
206
|
recnd |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( abs ‘ 𝑎 ) ∈ ℂ ) |
208 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝑛 / 2 ) ∈ ℕ ) |
209 |
208
|
nnnn0d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝑛 / 2 ) ∈ ℕ0 ) |
210 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
211 |
210
|
a1i |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 2 ∈ ℕ0 ) |
212 |
207 209 211
|
expmuld |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( abs ‘ 𝑎 ) ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( ( ( abs ‘ 𝑎 ) ↑ 2 ) ↑ ( 𝑛 / 2 ) ) ) |
213 |
205 209 211
|
expmuld |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝑎 ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( ( 𝑎 ↑ 2 ) ↑ ( 𝑛 / 2 ) ) ) |
214 |
204 212 213
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( abs ‘ 𝑎 ) ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( 𝑎 ↑ ( 2 · ( 𝑛 / 2 ) ) ) ) |
215 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑛 ∈ ( ℤ≥ ‘ 3 ) ) |
216 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
217 |
215 96 216
|
3syl |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑛 ∈ ℂ ) |
218 |
|
2cnd |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 2 ∈ ℂ ) |
219 |
|
2ne0 |
⊢ 2 ≠ 0 |
220 |
219
|
a1i |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 2 ≠ 0 ) |
221 |
217 218 220
|
divcan2d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( 2 · ( 𝑛 / 2 ) ) = 𝑛 ) |
222 |
221
|
eqcomd |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑛 = ( 2 · ( 𝑛 / 2 ) ) ) |
223 |
222
|
oveq2d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( abs ‘ 𝑎 ) ↑ 𝑛 ) = ( ( abs ‘ 𝑎 ) ↑ ( 2 · ( 𝑛 / 2 ) ) ) ) |
224 |
222
|
oveq2d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝑎 ↑ 𝑛 ) = ( 𝑎 ↑ ( 2 · ( 𝑛 / 2 ) ) ) ) |
225 |
214 223 224
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( abs ‘ 𝑎 ) ↑ 𝑛 ) = ( 𝑎 ↑ 𝑛 ) ) |
226 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑏 ∈ ( ℤ ∖ { 0 } ) ) |
227 |
226
|
eldifad |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑏 ∈ ℤ ) |
228 |
227
|
zred |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑏 ∈ ℝ ) |
229 |
|
absresq |
⊢ ( 𝑏 ∈ ℝ → ( ( abs ‘ 𝑏 ) ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
230 |
228 229
|
syl |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( abs ‘ 𝑏 ) ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
231 |
230
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( ( abs ‘ 𝑏 ) ↑ 2 ) ↑ ( 𝑛 / 2 ) ) = ( ( 𝑏 ↑ 2 ) ↑ ( 𝑛 / 2 ) ) ) |
232 |
226 23 168
|
3syl |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑏 ∈ ℂ ) |
233 |
232
|
abscld |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( abs ‘ 𝑏 ) ∈ ℝ ) |
234 |
233
|
recnd |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( abs ‘ 𝑏 ) ∈ ℂ ) |
235 |
234 209 211
|
expmuld |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( abs ‘ 𝑏 ) ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( ( ( abs ‘ 𝑏 ) ↑ 2 ) ↑ ( 𝑛 / 2 ) ) ) |
236 |
232 209 211
|
expmuld |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝑏 ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( ( 𝑏 ↑ 2 ) ↑ ( 𝑛 / 2 ) ) ) |
237 |
231 235 236
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( abs ‘ 𝑏 ) ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( 𝑏 ↑ ( 2 · ( 𝑛 / 2 ) ) ) ) |
238 |
222
|
oveq2d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( abs ‘ 𝑏 ) ↑ 𝑛 ) = ( ( abs ‘ 𝑏 ) ↑ ( 2 · ( 𝑛 / 2 ) ) ) ) |
239 |
222
|
oveq2d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝑏 ↑ 𝑛 ) = ( 𝑏 ↑ ( 2 · ( 𝑛 / 2 ) ) ) ) |
240 |
237 238 239
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( abs ‘ 𝑏 ) ↑ 𝑛 ) = ( 𝑏 ↑ 𝑛 ) ) |
241 |
225 240
|
oveq12d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( ( abs ‘ 𝑎 ) ↑ 𝑛 ) + ( ( abs ‘ 𝑏 ) ↑ 𝑛 ) ) = ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ) |
242 |
87
|
zred |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑐 ∈ ℝ ) |
243 |
|
absresq |
⊢ ( 𝑐 ∈ ℝ → ( ( abs ‘ 𝑐 ) ↑ 2 ) = ( 𝑐 ↑ 2 ) ) |
244 |
242 243
|
syl |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( abs ‘ 𝑐 ) ↑ 2 ) = ( 𝑐 ↑ 2 ) ) |
245 |
244
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( ( abs ‘ 𝑐 ) ↑ 2 ) ↑ ( 𝑛 / 2 ) ) = ( ( 𝑐 ↑ 2 ) ↑ ( 𝑛 / 2 ) ) ) |
246 |
|
zcn |
⊢ ( 𝑐 ∈ ℤ → 𝑐 ∈ ℂ ) |
247 |
86 65 246
|
3syl |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → 𝑐 ∈ ℂ ) |
248 |
247
|
abscld |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( abs ‘ 𝑐 ) ∈ ℝ ) |
249 |
248
|
recnd |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( abs ‘ 𝑐 ) ∈ ℂ ) |
250 |
249 209 211
|
expmuld |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( abs ‘ 𝑐 ) ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( ( ( abs ‘ 𝑐 ) ↑ 2 ) ↑ ( 𝑛 / 2 ) ) ) |
251 |
247 209 211
|
expmuld |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝑐 ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( ( 𝑐 ↑ 2 ) ↑ ( 𝑛 / 2 ) ) ) |
252 |
245 250 251
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( abs ‘ 𝑐 ) ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( 𝑐 ↑ ( 2 · ( 𝑛 / 2 ) ) ) ) |
253 |
222
|
oveq2d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( abs ‘ 𝑐 ) ↑ 𝑛 ) = ( ( abs ‘ 𝑐 ) ↑ ( 2 · ( 𝑛 / 2 ) ) ) ) |
254 |
222
|
oveq2d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝑐 ↑ 𝑛 ) = ( 𝑐 ↑ ( 2 · ( 𝑛 / 2 ) ) ) ) |
255 |
252 253 254
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( abs ‘ 𝑐 ) ↑ 𝑛 ) = ( 𝑐 ↑ 𝑛 ) ) |
256 |
198 241 255
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( ( abs ‘ 𝑎 ) ↑ 𝑛 ) + ( ( abs ‘ 𝑏 ) ↑ 𝑛 ) ) = ( ( abs ‘ 𝑐 ) ↑ 𝑛 ) ) |
257 |
|
iftrue |
⊢ ( ( 𝑛 / 2 ) ∈ ℕ → if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) = ( abs ‘ 𝑎 ) ) |
258 |
257
|
oveq1d |
⊢ ( ( 𝑛 / 2 ) ∈ ℕ → ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) = ( ( abs ‘ 𝑎 ) ↑ 𝑛 ) ) |
259 |
|
iftrue |
⊢ ( ( 𝑛 / 2 ) ∈ ℕ → if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) = ( abs ‘ 𝑏 ) ) |
260 |
259
|
oveq1d |
⊢ ( ( 𝑛 / 2 ) ∈ ℕ → ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) ↑ 𝑛 ) = ( ( abs ‘ 𝑏 ) ↑ 𝑛 ) ) |
261 |
258 260
|
oveq12d |
⊢ ( ( 𝑛 / 2 ) ∈ ℕ → ( ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) + ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) ↑ 𝑛 ) ) = ( ( ( abs ‘ 𝑎 ) ↑ 𝑛 ) + ( ( abs ‘ 𝑏 ) ↑ 𝑛 ) ) ) |
262 |
261
|
adantl |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) + ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) ↑ 𝑛 ) ) = ( ( ( abs ‘ 𝑎 ) ↑ 𝑛 ) + ( ( abs ‘ 𝑏 ) ↑ 𝑛 ) ) ) |
263 |
|
iftrue |
⊢ ( ( 𝑛 / 2 ) ∈ ℕ → if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑐 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ) = ( abs ‘ 𝑐 ) ) |
264 |
263
|
oveq1d |
⊢ ( ( 𝑛 / 2 ) ∈ ℕ → ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑐 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ) ↑ 𝑛 ) = ( ( abs ‘ 𝑐 ) ↑ 𝑛 ) ) |
265 |
264
|
adantl |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑐 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ) ↑ 𝑛 ) = ( ( abs ‘ 𝑐 ) ↑ 𝑛 ) ) |
266 |
256 262 265
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) + ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) ↑ 𝑛 ) ) = ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑐 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ) ↑ 𝑛 ) ) |
267 |
|
iftrue |
⊢ ( 0 < 𝑏 → if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) = 𝑎 ) |
268 |
267
|
oveq1d |
⊢ ( 0 < 𝑏 → ( if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) ↑ 𝑛 ) = ( 𝑎 ↑ 𝑛 ) ) |
269 |
|
iftrue |
⊢ ( 0 < 𝑏 → if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) = 𝑏 ) |
270 |
269
|
oveq1d |
⊢ ( 0 < 𝑏 → ( if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) ↑ 𝑛 ) = ( 𝑏 ↑ 𝑛 ) ) |
271 |
268 270
|
oveq12d |
⊢ ( 0 < 𝑏 → ( ( if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) ↑ 𝑛 ) ) = ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ) |
272 |
271
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → ( ( if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) ↑ 𝑛 ) ) = ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ) |
273 |
|
iftrue |
⊢ ( 0 < 𝑏 → if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) = 𝑐 ) |
274 |
273
|
oveq1d |
⊢ ( 0 < 𝑏 → ( if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) ↑ 𝑛 ) = ( 𝑐 ↑ 𝑛 ) ) |
275 |
274
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → ( if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) ↑ 𝑛 ) = ( 𝑐 ↑ 𝑛 ) ) |
276 |
112 272 275
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → ( ( if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) ↑ 𝑛 ) ) = ( if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) ↑ 𝑛 ) ) |
277 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑏 ∈ ( ℤ ∖ { 0 } ) ) |
278 |
277 23 168
|
3syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑏 ∈ ℂ ) |
279 |
|
simp-8l |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑛 ∈ ( ℤ≥ ‘ 3 ) ) |
280 |
279 96
|
syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑛 ∈ ℕ ) |
281 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ¬ ( 𝑛 / 2 ) ∈ ℕ ) |
282 |
|
2nn |
⊢ 2 ∈ ℕ |
283 |
|
nndivdvds |
⊢ ( ( 𝑛 ∈ ℕ ∧ 2 ∈ ℕ ) → ( 2 ∥ 𝑛 ↔ ( 𝑛 / 2 ) ∈ ℕ ) ) |
284 |
280 282 283
|
sylancl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( 2 ∥ 𝑛 ↔ ( 𝑛 / 2 ) ∈ ℕ ) ) |
285 |
281 284
|
mtbird |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ¬ 2 ∥ 𝑛 ) |
286 |
|
oexpneg |
⊢ ( ( 𝑏 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛 ) → ( - 𝑏 ↑ 𝑛 ) = - ( 𝑏 ↑ 𝑛 ) ) |
287 |
278 280 285 286
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( - 𝑏 ↑ 𝑛 ) = - ( 𝑏 ↑ 𝑛 ) ) |
288 |
287
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( - 𝑏 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) = ( - ( 𝑏 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) ) |
289 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
290 |
279 96 289
|
3syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑛 ∈ ℕ0 ) |
291 |
278 290
|
expcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( 𝑏 ↑ 𝑛 ) ∈ ℂ ) |
292 |
291
|
negcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → - ( 𝑏 ↑ 𝑛 ) ∈ ℂ ) |
293 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑐 ∈ ( ℤ ∖ { 0 } ) ) |
294 |
293 65 246
|
3syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑐 ∈ ℂ ) |
295 |
294 290
|
expcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( 𝑐 ↑ 𝑛 ) ∈ ℂ ) |
296 |
292 295
|
addcomd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( - ( 𝑏 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) = ( ( 𝑐 ↑ 𝑛 ) + - ( 𝑏 ↑ 𝑛 ) ) ) |
297 |
295 291
|
negsubd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( 𝑐 ↑ 𝑛 ) + - ( 𝑏 ↑ 𝑛 ) ) = ( ( 𝑐 ↑ 𝑛 ) − ( 𝑏 ↑ 𝑛 ) ) ) |
298 |
296 297
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( - ( 𝑏 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) = ( ( 𝑐 ↑ 𝑛 ) − ( 𝑏 ↑ 𝑛 ) ) ) |
299 |
118 10 155
|
3syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑎 ∈ ℂ ) |
300 |
299 290
|
expcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( 𝑎 ↑ 𝑛 ) ∈ ℂ ) |
301 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) |
302 |
301
|
eqcomd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( 𝑐 ↑ 𝑛 ) = ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ) |
303 |
300 291 302
|
mvrraddd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( 𝑐 ↑ 𝑛 ) − ( 𝑏 ↑ 𝑛 ) ) = ( 𝑎 ↑ 𝑛 ) ) |
304 |
288 298 303
|
3eqtrd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( - 𝑏 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) = ( 𝑎 ↑ 𝑛 ) ) |
305 |
|
iftrue |
⊢ ( 0 < 𝑐 → if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) = - 𝑏 ) |
306 |
305
|
oveq1d |
⊢ ( 0 < 𝑐 → ( if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ↑ 𝑛 ) = ( - 𝑏 ↑ 𝑛 ) ) |
307 |
|
iftrue |
⊢ ( 0 < 𝑐 → if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) = 𝑐 ) |
308 |
307
|
oveq1d |
⊢ ( 0 < 𝑐 → ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) = ( 𝑐 ↑ 𝑛 ) ) |
309 |
306 308
|
oveq12d |
⊢ ( 0 < 𝑐 → ( ( if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) = ( ( - 𝑏 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) ) |
310 |
309
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) = ( ( - 𝑏 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) ) |
311 |
|
iftrue |
⊢ ( 0 < 𝑐 → if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) = 𝑎 ) |
312 |
311
|
oveq1d |
⊢ ( 0 < 𝑐 → ( if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ↑ 𝑛 ) = ( 𝑎 ↑ 𝑛 ) ) |
313 |
312
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ↑ 𝑛 ) = ( 𝑎 ↑ 𝑛 ) ) |
314 |
304 310 313
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) = ( if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ↑ 𝑛 ) ) |
315 |
|
simp-8r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑎 ∈ ( ℤ ∖ { 0 } ) ) |
316 |
315 10 155
|
3syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑎 ∈ ℂ ) |
317 |
96
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑛 ∈ ℕ ) |
318 |
317
|
nnnn0d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑛 ∈ ℕ0 ) |
319 |
316 318
|
expcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( 𝑎 ↑ 𝑛 ) ∈ ℂ ) |
320 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑐 ∈ ( ℤ ∖ { 0 } ) ) |
321 |
320 65 246
|
3syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑐 ∈ ℂ ) |
322 |
321 318
|
expcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( 𝑐 ↑ 𝑛 ) ∈ ℂ ) |
323 |
319 322
|
negsubd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑎 ↑ 𝑛 ) + - ( 𝑐 ↑ 𝑛 ) ) = ( ( 𝑎 ↑ 𝑛 ) − ( 𝑐 ↑ 𝑛 ) ) ) |
324 |
319 322
|
subcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑎 ↑ 𝑛 ) − ( 𝑐 ↑ 𝑛 ) ) ∈ ℂ ) |
325 |
122 23 168
|
3syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑏 ∈ ℂ ) |
326 |
325 318
|
expcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( 𝑏 ↑ 𝑛 ) ∈ ℂ ) |
327 |
326
|
negcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → - ( 𝑏 ↑ 𝑛 ) ∈ ℂ ) |
328 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) |
329 |
319 326 328
|
mvlraddd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( 𝑎 ↑ 𝑛 ) = ( ( 𝑐 ↑ 𝑛 ) − ( 𝑏 ↑ 𝑛 ) ) ) |
330 |
322 319
|
pncan3d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑐 ↑ 𝑛 ) + ( ( 𝑎 ↑ 𝑛 ) − ( 𝑐 ↑ 𝑛 ) ) ) = ( 𝑎 ↑ 𝑛 ) ) |
331 |
322 326
|
negsubd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑐 ↑ 𝑛 ) + - ( 𝑏 ↑ 𝑛 ) ) = ( ( 𝑐 ↑ 𝑛 ) − ( 𝑏 ↑ 𝑛 ) ) ) |
332 |
329 330 331
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑐 ↑ 𝑛 ) + ( ( 𝑎 ↑ 𝑛 ) − ( 𝑐 ↑ 𝑛 ) ) ) = ( ( 𝑐 ↑ 𝑛 ) + - ( 𝑏 ↑ 𝑛 ) ) ) |
333 |
322 324 327 332
|
addcanad |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑎 ↑ 𝑛 ) − ( 𝑐 ↑ 𝑛 ) ) = - ( 𝑏 ↑ 𝑛 ) ) |
334 |
323 333
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑎 ↑ 𝑛 ) + - ( 𝑐 ↑ 𝑛 ) ) = - ( 𝑏 ↑ 𝑛 ) ) |
335 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ¬ ( 𝑛 / 2 ) ∈ ℕ ) |
336 |
317 282 283
|
sylancl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( 2 ∥ 𝑛 ↔ ( 𝑛 / 2 ) ∈ ℕ ) ) |
337 |
335 336
|
mtbird |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ¬ 2 ∥ 𝑛 ) |
338 |
|
oexpneg |
⊢ ( ( 𝑐 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛 ) → ( - 𝑐 ↑ 𝑛 ) = - ( 𝑐 ↑ 𝑛 ) ) |
339 |
321 317 337 338
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( - 𝑐 ↑ 𝑛 ) = - ( 𝑐 ↑ 𝑛 ) ) |
340 |
339
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑎 ↑ 𝑛 ) + ( - 𝑐 ↑ 𝑛 ) ) = ( ( 𝑎 ↑ 𝑛 ) + - ( 𝑐 ↑ 𝑛 ) ) ) |
341 |
325 317 337 286
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( - 𝑏 ↑ 𝑛 ) = - ( 𝑏 ↑ 𝑛 ) ) |
342 |
334 340 341
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑎 ↑ 𝑛 ) + ( - 𝑐 ↑ 𝑛 ) ) = ( - 𝑏 ↑ 𝑛 ) ) |
343 |
|
iffalse |
⊢ ( ¬ 0 < 𝑐 → if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) = 𝑎 ) |
344 |
343
|
oveq1d |
⊢ ( ¬ 0 < 𝑐 → ( if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ↑ 𝑛 ) = ( 𝑎 ↑ 𝑛 ) ) |
345 |
|
iffalse |
⊢ ( ¬ 0 < 𝑐 → if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) = - 𝑐 ) |
346 |
345
|
oveq1d |
⊢ ( ¬ 0 < 𝑐 → ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) = ( - 𝑐 ↑ 𝑛 ) ) |
347 |
344 346
|
oveq12d |
⊢ ( ¬ 0 < 𝑐 → ( ( if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) = ( ( 𝑎 ↑ 𝑛 ) + ( - 𝑐 ↑ 𝑛 ) ) ) |
348 |
347
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) = ( ( 𝑎 ↑ 𝑛 ) + ( - 𝑐 ↑ 𝑛 ) ) ) |
349 |
|
iffalse |
⊢ ( ¬ 0 < 𝑐 → if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) = - 𝑏 ) |
350 |
349
|
oveq1d |
⊢ ( ¬ 0 < 𝑐 → ( if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ↑ 𝑛 ) = ( - 𝑏 ↑ 𝑛 ) ) |
351 |
350
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ↑ 𝑛 ) = ( - 𝑏 ↑ 𝑛 ) ) |
352 |
342 348 351
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) = ( if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ↑ 𝑛 ) ) |
353 |
314 352
|
pm2.61dan |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( ( if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) = ( if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ↑ 𝑛 ) ) |
354 |
|
iffalse |
⊢ ( ¬ 0 < 𝑏 → if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) = if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) |
355 |
354
|
oveq1d |
⊢ ( ¬ 0 < 𝑏 → ( if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ↑ 𝑛 ) ) |
356 |
|
iffalse |
⊢ ( ¬ 0 < 𝑏 → if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) = if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) |
357 |
356
|
oveq1d |
⊢ ( ¬ 0 < 𝑏 → ( if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) |
358 |
355 357
|
oveq12d |
⊢ ( ¬ 0 < 𝑏 → ( ( if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) ↑ 𝑛 ) ) = ( ( if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) ) |
359 |
358
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( ( if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) ↑ 𝑛 ) ) = ( ( if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) ) |
360 |
|
iffalse |
⊢ ( ¬ 0 < 𝑏 → if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) = if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) |
361 |
360
|
oveq1d |
⊢ ( ¬ 0 < 𝑏 → ( if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ↑ 𝑛 ) ) |
362 |
361
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ↑ 𝑛 ) ) |
363 |
353 359 362
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( ( if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) ↑ 𝑛 ) ) = ( if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) ↑ 𝑛 ) ) |
364 |
276 363
|
pm2.61dan |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) → ( ( if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) ↑ 𝑛 ) ) = ( if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) ↑ 𝑛 ) ) |
365 |
|
iftrue |
⊢ ( 0 < 𝑎 → if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) = if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) ) |
366 |
365
|
oveq1d |
⊢ ( 0 < 𝑎 → ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) ↑ 𝑛 ) ) |
367 |
|
iftrue |
⊢ ( 0 < 𝑎 → if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) = if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) ) |
368 |
367
|
oveq1d |
⊢ ( 0 < 𝑎 → ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) ↑ 𝑛 ) ) |
369 |
366 368
|
oveq12d |
⊢ ( 0 < 𝑎 → ( ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ↑ 𝑛 ) ) = ( ( if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) ↑ 𝑛 ) ) ) |
370 |
369
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) → ( ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ↑ 𝑛 ) ) = ( ( if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) ↑ 𝑛 ) ) ) |
371 |
|
iftrue |
⊢ ( 0 < 𝑎 → if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) = if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) ) |
372 |
371
|
oveq1d |
⊢ ( 0 < 𝑎 → ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) ↑ 𝑛 ) ) |
373 |
372
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) → ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) ↑ 𝑛 ) ) |
374 |
364 370 373
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ 0 < 𝑎 ) → ( ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ↑ 𝑛 ) ) = ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ↑ 𝑛 ) ) |
375 |
|
simp-8r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑎 ∈ ( ℤ ∖ { 0 } ) ) |
376 |
375 10 155
|
3syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑎 ∈ ℂ ) |
377 |
96
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑛 ∈ ℕ ) |
378 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ¬ ( 𝑛 / 2 ) ∈ ℕ ) |
379 |
377 282 283
|
sylancl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( 2 ∥ 𝑛 ↔ ( 𝑛 / 2 ) ∈ ℕ ) ) |
380 |
378 379
|
mtbird |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ¬ 2 ∥ 𝑛 ) |
381 |
|
oexpneg |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛 ) → ( - 𝑎 ↑ 𝑛 ) = - ( 𝑎 ↑ 𝑛 ) ) |
382 |
376 377 380 381
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( - 𝑎 ↑ 𝑛 ) = - ( 𝑎 ↑ 𝑛 ) ) |
383 |
382
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( - 𝑎 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) = ( - ( 𝑎 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) ) |
384 |
377
|
nnnn0d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑛 ∈ ℕ0 ) |
385 |
376 384
|
expcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( 𝑎 ↑ 𝑛 ) ∈ ℂ ) |
386 |
385
|
negcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → - ( 𝑎 ↑ 𝑛 ) ∈ ℂ ) |
387 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑐 ∈ ( ℤ ∖ { 0 } ) ) |
388 |
387 65 246
|
3syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑐 ∈ ℂ ) |
389 |
388 384
|
expcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( 𝑐 ↑ 𝑛 ) ∈ ℂ ) |
390 |
386 389
|
addcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( - ( 𝑎 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) ∈ ℂ ) |
391 |
129 23 168
|
3syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → 𝑏 ∈ ℂ ) |
392 |
391 384
|
expcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( 𝑏 ↑ 𝑛 ) ∈ ℂ ) |
393 |
385
|
negidd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( 𝑎 ↑ 𝑛 ) + - ( 𝑎 ↑ 𝑛 ) ) = 0 ) |
394 |
393
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( ( 𝑎 ↑ 𝑛 ) + - ( 𝑎 ↑ 𝑛 ) ) + ( 𝑐 ↑ 𝑛 ) ) = ( 0 + ( 𝑐 ↑ 𝑛 ) ) ) |
395 |
385 386 389
|
addassd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( ( 𝑎 ↑ 𝑛 ) + - ( 𝑎 ↑ 𝑛 ) ) + ( 𝑐 ↑ 𝑛 ) ) = ( ( 𝑎 ↑ 𝑛 ) + ( - ( 𝑎 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) ) ) |
396 |
389
|
addid2d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( 0 + ( 𝑐 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) |
397 |
394 395 396
|
3eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( 𝑎 ↑ 𝑛 ) + ( - ( 𝑎 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) ) = ( 𝑐 ↑ 𝑛 ) ) |
398 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) |
399 |
397 398
|
eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( 𝑎 ↑ 𝑛 ) + ( - ( 𝑎 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) ) = ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ) |
400 |
385 390 392 399
|
addcanad |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( - ( 𝑎 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) = ( 𝑏 ↑ 𝑛 ) ) |
401 |
383 400
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( - 𝑎 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) = ( 𝑏 ↑ 𝑛 ) ) |
402 |
|
iftrue |
⊢ ( 0 < 𝑐 → if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) = - 𝑎 ) |
403 |
402
|
oveq1d |
⊢ ( 0 < 𝑐 → ( if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) ↑ 𝑛 ) = ( - 𝑎 ↑ 𝑛 ) ) |
404 |
403 308
|
oveq12d |
⊢ ( 0 < 𝑐 → ( ( if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) = ( ( - 𝑎 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) ) |
405 |
404
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) = ( ( - 𝑎 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) ) |
406 |
|
iftrue |
⊢ ( 0 < 𝑐 → if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) = 𝑏 ) |
407 |
406
|
oveq1d |
⊢ ( 0 < 𝑐 → ( if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) ↑ 𝑛 ) = ( 𝑏 ↑ 𝑛 ) ) |
408 |
407
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) ↑ 𝑛 ) = ( 𝑏 ↑ 𝑛 ) ) |
409 |
401 405 408
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ 0 < 𝑐 ) → ( ( if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) = ( if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) ↑ 𝑛 ) ) |
410 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑏 ∈ ( ℤ ∖ { 0 } ) ) |
411 |
410 23 168
|
3syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑏 ∈ ℂ ) |
412 |
|
simp-8l |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑛 ∈ ( ℤ≥ ‘ 3 ) ) |
413 |
412 96 289
|
3syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑛 ∈ ℕ0 ) |
414 |
411 413
|
expcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( 𝑏 ↑ 𝑛 ) ∈ ℂ ) |
415 |
414
|
negcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → - ( 𝑏 ↑ 𝑛 ) ∈ ℂ ) |
416 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑐 ∈ ( ℤ ∖ { 0 } ) ) |
417 |
416 65 246
|
3syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑐 ∈ ℂ ) |
418 |
417 413
|
expcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( 𝑐 ↑ 𝑛 ) ∈ ℂ ) |
419 |
415 418
|
addcomd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( - ( 𝑏 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) = ( ( 𝑐 ↑ 𝑛 ) + - ( 𝑏 ↑ 𝑛 ) ) ) |
420 |
418 414
|
negsubd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑐 ↑ 𝑛 ) + - ( 𝑏 ↑ 𝑛 ) ) = ( ( 𝑐 ↑ 𝑛 ) − ( 𝑏 ↑ 𝑛 ) ) ) |
421 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) |
422 |
421
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) − ( 𝑏 ↑ 𝑛 ) ) = ( ( 𝑐 ↑ 𝑛 ) − ( 𝑏 ↑ 𝑛 ) ) ) |
423 |
133 10 155
|
3syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑎 ∈ ℂ ) |
424 |
423 413
|
expcld |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( 𝑎 ↑ 𝑛 ) ∈ ℂ ) |
425 |
424 414
|
pncand |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) − ( 𝑏 ↑ 𝑛 ) ) = ( 𝑎 ↑ 𝑛 ) ) |
426 |
422 425
|
eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑐 ↑ 𝑛 ) − ( 𝑏 ↑ 𝑛 ) ) = ( 𝑎 ↑ 𝑛 ) ) |
427 |
419 420 426
|
3eqtrd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( - ( 𝑏 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) = ( 𝑎 ↑ 𝑛 ) ) |
428 |
427
|
negeqd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → - ( - ( 𝑏 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) = - ( 𝑎 ↑ 𝑛 ) ) |
429 |
414
|
negnegd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → - - ( 𝑏 ↑ 𝑛 ) = ( 𝑏 ↑ 𝑛 ) ) |
430 |
429
|
eqcomd |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( 𝑏 ↑ 𝑛 ) = - - ( 𝑏 ↑ 𝑛 ) ) |
431 |
430
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑏 ↑ 𝑛 ) + - ( 𝑐 ↑ 𝑛 ) ) = ( - - ( 𝑏 ↑ 𝑛 ) + - ( 𝑐 ↑ 𝑛 ) ) ) |
432 |
412 96
|
syl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → 𝑛 ∈ ℕ ) |
433 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ¬ ( 𝑛 / 2 ) ∈ ℕ ) |
434 |
432 282 283
|
sylancl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( 2 ∥ 𝑛 ↔ ( 𝑛 / 2 ) ∈ ℕ ) ) |
435 |
433 434
|
mtbird |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ¬ 2 ∥ 𝑛 ) |
436 |
417 432 435 338
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( - 𝑐 ↑ 𝑛 ) = - ( 𝑐 ↑ 𝑛 ) ) |
437 |
436
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑏 ↑ 𝑛 ) + ( - 𝑐 ↑ 𝑛 ) ) = ( ( 𝑏 ↑ 𝑛 ) + - ( 𝑐 ↑ 𝑛 ) ) ) |
438 |
415 418
|
negdid |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → - ( - ( 𝑏 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) = ( - - ( 𝑏 ↑ 𝑛 ) + - ( 𝑐 ↑ 𝑛 ) ) ) |
439 |
431 437 438
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑏 ↑ 𝑛 ) + ( - 𝑐 ↑ 𝑛 ) ) = - ( - ( 𝑏 ↑ 𝑛 ) + ( 𝑐 ↑ 𝑛 ) ) ) |
440 |
423 432 435 381
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( - 𝑎 ↑ 𝑛 ) = - ( 𝑎 ↑ 𝑛 ) ) |
441 |
428 439 440
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( 𝑏 ↑ 𝑛 ) + ( - 𝑐 ↑ 𝑛 ) ) = ( - 𝑎 ↑ 𝑛 ) ) |
442 |
|
iffalse |
⊢ ( ¬ 0 < 𝑐 → if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) = 𝑏 ) |
443 |
442
|
oveq1d |
⊢ ( ¬ 0 < 𝑐 → ( if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) ↑ 𝑛 ) = ( 𝑏 ↑ 𝑛 ) ) |
444 |
443 346
|
oveq12d |
⊢ ( ¬ 0 < 𝑐 → ( ( if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) = ( ( 𝑏 ↑ 𝑛 ) + ( - 𝑐 ↑ 𝑛 ) ) ) |
445 |
444
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) = ( ( 𝑏 ↑ 𝑛 ) + ( - 𝑐 ↑ 𝑛 ) ) ) |
446 |
|
iffalse |
⊢ ( ¬ 0 < 𝑐 → if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) = - 𝑎 ) |
447 |
446
|
oveq1d |
⊢ ( ¬ 0 < 𝑐 → ( if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) ↑ 𝑛 ) = ( - 𝑎 ↑ 𝑛 ) ) |
448 |
447
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) ↑ 𝑛 ) = ( - 𝑎 ↑ 𝑛 ) ) |
449 |
441 445 448
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) ∧ ¬ 0 < 𝑐 ) → ( ( if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) = ( if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) ↑ 𝑛 ) ) |
450 |
409 449
|
pm2.61dan |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → ( ( if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) = ( if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) ↑ 𝑛 ) ) |
451 |
|
iftrue |
⊢ ( 0 < 𝑏 → if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) = if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) ) |
452 |
451
|
oveq1d |
⊢ ( 0 < 𝑏 → ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ↑ 𝑛 ) = ( if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) ↑ 𝑛 ) ) |
453 |
|
iftrue |
⊢ ( 0 < 𝑏 → if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) = if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) |
454 |
453
|
oveq1d |
⊢ ( 0 < 𝑏 → ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ↑ 𝑛 ) = ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) |
455 |
452 454
|
oveq12d |
⊢ ( 0 < 𝑏 → ( ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ↑ 𝑛 ) ) = ( ( if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) ) |
456 |
455
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → ( ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ↑ 𝑛 ) ) = ( ( if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) ↑ 𝑛 ) + ( if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ↑ 𝑛 ) ) ) |
457 |
|
iftrue |
⊢ ( 0 < 𝑏 → if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) = if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) ) |
458 |
457
|
oveq1d |
⊢ ( 0 < 𝑏 → ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ↑ 𝑛 ) = ( if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) ↑ 𝑛 ) ) |
459 |
458
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ↑ 𝑛 ) = ( if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) ↑ 𝑛 ) ) |
460 |
450 456 459
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ 0 < 𝑏 ) → ( ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ↑ 𝑛 ) ) = ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ↑ 𝑛 ) ) |
461 |
186
|
negeqd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → - ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = - ( 𝑐 ↑ 𝑛 ) ) |
462 |
144 282 283
|
sylancl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( 2 ∥ 𝑛 ↔ ( 𝑛 / 2 ) ∈ ℕ ) ) |
463 |
161 462
|
mtbird |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ¬ 2 ∥ 𝑛 ) |
464 |
156 144 463 381
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( - 𝑎 ↑ 𝑛 ) = - ( 𝑎 ↑ 𝑛 ) ) |
465 |
169 144 463 286
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( - 𝑏 ↑ 𝑛 ) = - ( 𝑏 ↑ 𝑛 ) ) |
466 |
464 465
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( ( - 𝑎 ↑ 𝑛 ) + ( - 𝑏 ↑ 𝑛 ) ) = ( - ( 𝑎 ↑ 𝑛 ) + - ( 𝑏 ↑ 𝑛 ) ) ) |
467 |
141 11
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑎 ≠ 0 ) |
468 |
156 467 172
|
expclzd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( 𝑎 ↑ 𝑛 ) ∈ ℂ ) |
469 |
169 170 172
|
expclzd |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( 𝑏 ↑ 𝑛 ) ∈ ℂ ) |
470 |
468 469
|
negdid |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → - ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( - ( 𝑎 ↑ 𝑛 ) + - ( 𝑏 ↑ 𝑛 ) ) ) |
471 |
466 470
|
eqtr4d |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( ( - 𝑎 ↑ 𝑛 ) + ( - 𝑏 ↑ 𝑛 ) ) = - ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ) |
472 |
139 65 246
|
3syl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → 𝑐 ∈ ℂ ) |
473 |
472 144 463 338
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( - 𝑐 ↑ 𝑛 ) = - ( 𝑐 ↑ 𝑛 ) ) |
474 |
461 471 473
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( ( - 𝑎 ↑ 𝑛 ) + ( - 𝑏 ↑ 𝑛 ) ) = ( - 𝑐 ↑ 𝑛 ) ) |
475 |
|
iffalse |
⊢ ( ¬ 0 < 𝑏 → if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) = - 𝑎 ) |
476 |
475
|
oveq1d |
⊢ ( ¬ 0 < 𝑏 → ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ↑ 𝑛 ) = ( - 𝑎 ↑ 𝑛 ) ) |
477 |
|
iffalse |
⊢ ( ¬ 0 < 𝑏 → if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) = - 𝑏 ) |
478 |
477
|
oveq1d |
⊢ ( ¬ 0 < 𝑏 → ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ↑ 𝑛 ) = ( - 𝑏 ↑ 𝑛 ) ) |
479 |
476 478
|
oveq12d |
⊢ ( ¬ 0 < 𝑏 → ( ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ↑ 𝑛 ) ) = ( ( - 𝑎 ↑ 𝑛 ) + ( - 𝑏 ↑ 𝑛 ) ) ) |
480 |
479
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ↑ 𝑛 ) ) = ( ( - 𝑎 ↑ 𝑛 ) + ( - 𝑏 ↑ 𝑛 ) ) ) |
481 |
|
iffalse |
⊢ ( ¬ 0 < 𝑏 → if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) = - 𝑐 ) |
482 |
481
|
oveq1d |
⊢ ( ¬ 0 < 𝑏 → ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ↑ 𝑛 ) = ( - 𝑐 ↑ 𝑛 ) ) |
483 |
482
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ↑ 𝑛 ) = ( - 𝑐 ↑ 𝑛 ) ) |
484 |
474 480 483
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 0 < 𝑏 ) → ( ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ↑ 𝑛 ) ) = ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ↑ 𝑛 ) ) |
485 |
460 484
|
pm2.61dan |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) → ( ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ↑ 𝑛 ) ) = ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ↑ 𝑛 ) ) |
486 |
|
iffalse |
⊢ ( ¬ 0 < 𝑎 → if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) = if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) |
487 |
486
|
oveq1d |
⊢ ( ¬ 0 < 𝑎 → ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ↑ 𝑛 ) ) |
488 |
|
iffalse |
⊢ ( ¬ 0 < 𝑎 → if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) = if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) |
489 |
488
|
oveq1d |
⊢ ( ¬ 0 < 𝑎 → ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ↑ 𝑛 ) ) |
490 |
487 489
|
oveq12d |
⊢ ( ¬ 0 < 𝑎 → ( ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ↑ 𝑛 ) ) = ( ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ↑ 𝑛 ) ) ) |
491 |
490
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) → ( ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ↑ 𝑛 ) ) = ( ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ↑ 𝑛 ) + ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ↑ 𝑛 ) ) ) |
492 |
|
iffalse |
⊢ ( ¬ 0 < 𝑎 → if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) = if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) |
493 |
492
|
oveq1d |
⊢ ( ¬ 0 < 𝑎 → ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ↑ 𝑛 ) ) |
494 |
493
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) → ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ↑ 𝑛 ) ) |
495 |
485 491 494
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ∧ ¬ 0 < 𝑎 ) → ( ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ↑ 𝑛 ) ) = ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ↑ 𝑛 ) ) |
496 |
374 495
|
pm2.61dan |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ↑ 𝑛 ) ) = ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ↑ 𝑛 ) ) |
497 |
|
iffalse |
⊢ ( ¬ ( 𝑛 / 2 ) ∈ ℕ → if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) = if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) |
498 |
497
|
oveq1d |
⊢ ( ¬ ( 𝑛 / 2 ) ∈ ℕ → ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ↑ 𝑛 ) ) |
499 |
|
iffalse |
⊢ ( ¬ ( 𝑛 / 2 ) ∈ ℕ → if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) = if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) |
500 |
499
|
oveq1d |
⊢ ( ¬ ( 𝑛 / 2 ) ∈ ℕ → ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ↑ 𝑛 ) ) |
501 |
498 500
|
oveq12d |
⊢ ( ¬ ( 𝑛 / 2 ) ∈ ℕ → ( ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) + ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) ↑ 𝑛 ) ) = ( ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ↑ 𝑛 ) ) ) |
502 |
501
|
adantl |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) + ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) ↑ 𝑛 ) ) = ( ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ↑ 𝑛 ) + ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ↑ 𝑛 ) ) ) |
503 |
|
iffalse |
⊢ ( ¬ ( 𝑛 / 2 ) ∈ ℕ → if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑐 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ) = if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ) |
504 |
503
|
oveq1d |
⊢ ( ¬ ( 𝑛 / 2 ) ∈ ℕ → ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑐 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ↑ 𝑛 ) ) |
505 |
504
|
adantl |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) → ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑐 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ) ↑ 𝑛 ) = ( if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ↑ 𝑛 ) ) |
506 |
496 502 505
|
3eqtr4d |
⊢ ( ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) + ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) ↑ 𝑛 ) ) = ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑐 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ) ↑ 𝑛 ) ) |
507 |
266 506
|
pm2.61dan |
⊢ ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) → ( ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑎 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑎 , if ( 0 < 𝑐 , - 𝑏 , 𝑎 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , - 𝑎 , 𝑏 ) , - 𝑎 ) ) ) ↑ 𝑛 ) + ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑏 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑐 , - 𝑐 ) , - 𝑏 ) ) ) ↑ 𝑛 ) ) = ( if ( ( 𝑛 / 2 ) ∈ ℕ , ( abs ‘ 𝑐 ) , if ( 0 < 𝑎 , if ( 0 < 𝑏 , 𝑐 , if ( 0 < 𝑐 , 𝑎 , - 𝑏 ) ) , if ( 0 < 𝑏 , if ( 0 < 𝑐 , 𝑏 , - 𝑎 ) , - 𝑐 ) ) ) ↑ 𝑛 ) ) |
508 |
3 6 8 48 85 197 507
|
3rspcedvdw |
⊢ ( ( ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑐 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ) |
509 |
508
|
rexlimdva2 |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( ∃ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ) ) |
510 |
509
|
rexlimdva |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑎 ∈ ( ℤ ∖ { 0 } ) ) → ( ∃ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∃ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ) ) |
511 |
510
|
rexlimdva |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) → ( ∃ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∃ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∃ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ) ) |
512 |
511
|
reximia |
⊢ ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∃ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∃ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∃ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) → ∃ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ) |
513 |
|
nne |
⊢ ( ¬ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ↔ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ) |
514 |
513
|
bicomi |
⊢ ( ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ↔ ¬ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |
515 |
514
|
rexbii |
⊢ ( ∃ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ↔ ∃ 𝑐 ∈ ( ℤ ∖ { 0 } ) ¬ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |
516 |
|
rexnal |
⊢ ( ∃ 𝑐 ∈ ( ℤ ∖ { 0 } ) ¬ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ↔ ¬ ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |
517 |
515 516
|
bitri |
⊢ ( ∃ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ↔ ¬ ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |
518 |
517
|
rexbii |
⊢ ( ∃ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∃ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ↔ ∃ 𝑏 ∈ ( ℤ ∖ { 0 } ) ¬ ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |
519 |
|
rexnal |
⊢ ( ∃ 𝑏 ∈ ( ℤ ∖ { 0 } ) ¬ ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ↔ ¬ ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |
520 |
518 519
|
bitri |
⊢ ( ∃ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∃ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ↔ ¬ ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |
521 |
520
|
rexbii |
⊢ ( ∃ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∃ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∃ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ↔ ∃ 𝑎 ∈ ( ℤ ∖ { 0 } ) ¬ ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |
522 |
|
rexnal |
⊢ ( ∃ 𝑎 ∈ ( ℤ ∖ { 0 } ) ¬ ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ↔ ¬ ∀ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |
523 |
521 522
|
bitri |
⊢ ( ∃ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∃ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∃ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ↔ ¬ ∀ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |
524 |
523
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∃ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∃ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∃ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ¬ ∀ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |
525 |
|
rexnal |
⊢ ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ¬ ∀ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ↔ ¬ ∀ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∀ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |
526 |
524 525
|
bitri |
⊢ ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∃ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∃ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∃ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( 𝑐 ↑ 𝑛 ) ↔ ¬ ∀ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∀ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |
527 |
|
nne |
⊢ ( ¬ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ↔ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ) |
528 |
527
|
bicomi |
⊢ ( ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ↔ ¬ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
529 |
528
|
rexbii |
⊢ ( ∃ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ↔ ∃ 𝑧 ∈ ℕ ¬ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
530 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ ℕ ¬ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ↔ ¬ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
531 |
529 530
|
bitri |
⊢ ( ∃ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ↔ ¬ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
532 |
531
|
rexbii |
⊢ ( ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ↔ ∃ 𝑦 ∈ ℕ ¬ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
533 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ ℕ ¬ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ↔ ¬ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
534 |
532 533
|
bitri |
⊢ ( ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ↔ ¬ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
535 |
534
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ↔ ∃ 𝑥 ∈ ℕ ¬ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
536 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ ℕ ¬ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ↔ ¬ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
537 |
535 536
|
bitri |
⊢ ( ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ↔ ¬ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
538 |
537
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ¬ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
539 |
|
rexnal |
⊢ ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ¬ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ↔ ¬ ∀ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
540 |
538 539
|
bitri |
⊢ ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) = ( 𝑧 ↑ 𝑛 ) ↔ ¬ ∀ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
541 |
512 526 540
|
3imtr3i |
⊢ ( ¬ ∀ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∀ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) → ¬ ∀ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
542 |
541
|
con4i |
⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∀ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |
543 |
|
dfn2 |
⊢ ℕ = ( ℕ0 ∖ { 0 } ) |
544 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
545 |
|
ssdif |
⊢ ( ℕ0 ⊆ ℤ → ( ℕ0 ∖ { 0 } ) ⊆ ( ℤ ∖ { 0 } ) ) |
546 |
544 545
|
ax-mp |
⊢ ( ℕ0 ∖ { 0 } ) ⊆ ( ℤ ∖ { 0 } ) |
547 |
543 546
|
eqsstri |
⊢ ℕ ⊆ ( ℤ ∖ { 0 } ) |
548 |
|
ssel |
⊢ ( ℕ ⊆ ( ℤ ∖ { 0 } ) → ( 𝑎 ∈ ℕ → 𝑎 ∈ ( ℤ ∖ { 0 } ) ) ) |
549 |
|
ss2ralv |
⊢ ( ℕ ⊆ ( ℤ ∖ { 0 } ) → ( ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) → ∀ 𝑏 ∈ ℕ ∀ 𝑐 ∈ ℕ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) ) |
550 |
548 549
|
imim12d |
⊢ ( ℕ ⊆ ( ℤ ∖ { 0 } ) → ( ( 𝑎 ∈ ( ℤ ∖ { 0 } ) → ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) → ( 𝑎 ∈ ℕ → ∀ 𝑏 ∈ ℕ ∀ 𝑐 ∈ ℕ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) ) ) |
551 |
550
|
ralimdv2 |
⊢ ( ℕ ⊆ ( ℤ ∖ { 0 } ) → ( ∀ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) → ∀ 𝑎 ∈ ℕ ∀ 𝑏 ∈ ℕ ∀ 𝑐 ∈ ℕ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) ) |
552 |
547 551
|
ax-mp |
⊢ ( ∀ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) → ∀ 𝑎 ∈ ℕ ∀ 𝑏 ∈ ℕ ∀ 𝑐 ∈ ℕ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |
553 |
|
oveq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑛 ) ) |
554 |
553
|
oveq1d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( ( 𝑥 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ) |
555 |
554
|
neeq1d |
⊢ ( 𝑎 = 𝑥 → ( ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ↔ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) ) |
556 |
|
oveq1 |
⊢ ( 𝑏 = 𝑦 → ( 𝑏 ↑ 𝑛 ) = ( 𝑦 ↑ 𝑛 ) ) |
557 |
556
|
oveq2d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝑥 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) = ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ) |
558 |
557
|
neeq1d |
⊢ ( 𝑏 = 𝑦 → ( ( ( 𝑥 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ↔ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) ) |
559 |
|
oveq1 |
⊢ ( 𝑐 = 𝑧 → ( 𝑐 ↑ 𝑛 ) = ( 𝑧 ↑ 𝑛 ) ) |
560 |
559
|
neeq2d |
⊢ ( 𝑐 = 𝑧 → ( ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ↔ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) ) |
561 |
555 558 560
|
cbvral3vw |
⊢ ( ∀ 𝑎 ∈ ℕ ∀ 𝑏 ∈ ℕ ∀ 𝑐 ∈ ℕ ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ↔ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
562 |
552 561
|
sylib |
⊢ ( ∀ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) → ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
563 |
562
|
ralimi |
⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∀ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ) |
564 |
542 563
|
impbii |
⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ℕ ( ( 𝑥 ↑ 𝑛 ) + ( 𝑦 ↑ 𝑛 ) ) ≠ ( 𝑧 ↑ 𝑛 ) ↔ ∀ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∀ 𝑎 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑏 ∈ ( ℤ ∖ { 0 } ) ∀ 𝑐 ∈ ( ℤ ∖ { 0 } ) ( ( 𝑎 ↑ 𝑛 ) + ( 𝑏 ↑ 𝑛 ) ) ≠ ( 𝑐 ↑ 𝑛 ) ) |