| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oexpreposd.n |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 2 |
|
oexpreposd.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 3 |
|
oexpreposd.1 |
⊢ ( 𝜑 → ¬ ( 𝑀 / 2 ) ∈ ℕ ) |
| 4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑁 ∈ ℝ ) |
| 5 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑀 ∈ ℤ ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 0 < 𝑁 ) |
| 8 |
|
expgt0 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑁 ) → 0 < ( 𝑁 ↑ 𝑀 ) ) |
| 9 |
4 6 7 8
|
syl3anc |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 0 < ( 𝑁 ↑ 𝑀 ) ) |
| 10 |
9
|
ex |
⊢ ( 𝜑 → ( 0 < 𝑁 → 0 < ( 𝑁 ↑ 𝑀 ) ) ) |
| 11 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 12 |
11 1
|
lttrid |
⊢ ( 𝜑 → ( 0 < 𝑁 ↔ ¬ ( 0 = 𝑁 ∨ 𝑁 < 0 ) ) ) |
| 13 |
12
|
notbid |
⊢ ( 𝜑 → ( ¬ 0 < 𝑁 ↔ ¬ ¬ ( 0 = 𝑁 ∨ 𝑁 < 0 ) ) ) |
| 14 |
|
notnotr |
⊢ ( ¬ ¬ ( 0 = 𝑁 ∨ 𝑁 < 0 ) → ( 0 = 𝑁 ∨ 𝑁 < 0 ) ) |
| 15 |
|
0re |
⊢ 0 ∈ ℝ |
| 16 |
15
|
ltnri |
⊢ ¬ 0 < 0 |
| 17 |
2
|
0expd |
⊢ ( 𝜑 → ( 0 ↑ 𝑀 ) = 0 ) |
| 18 |
17
|
breq2d |
⊢ ( 𝜑 → ( 0 < ( 0 ↑ 𝑀 ) ↔ 0 < 0 ) ) |
| 19 |
16 18
|
mtbiri |
⊢ ( 𝜑 → ¬ 0 < ( 0 ↑ 𝑀 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 0 = 𝑁 ) → ¬ 0 < ( 0 ↑ 𝑀 ) ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 = 𝑁 ) → 0 = 𝑁 ) |
| 22 |
21
|
eqcomd |
⊢ ( ( 𝜑 ∧ 0 = 𝑁 ) → 𝑁 = 0 ) |
| 23 |
22
|
oveq1d |
⊢ ( ( 𝜑 ∧ 0 = 𝑁 ) → ( 𝑁 ↑ 𝑀 ) = ( 0 ↑ 𝑀 ) ) |
| 24 |
23
|
breq2d |
⊢ ( ( 𝜑 ∧ 0 = 𝑁 ) → ( 0 < ( 𝑁 ↑ 𝑀 ) ↔ 0 < ( 0 ↑ 𝑀 ) ) ) |
| 25 |
20 24
|
mtbird |
⊢ ( ( 𝜑 ∧ 0 = 𝑁 ) → ¬ 0 < ( 𝑁 ↑ 𝑀 ) ) |
| 26 |
25
|
ex |
⊢ ( 𝜑 → ( 0 = 𝑁 → ¬ 0 < ( 𝑁 ↑ 𝑀 ) ) ) |
| 27 |
1
|
renegcld |
⊢ ( 𝜑 → - 𝑁 ∈ ℝ ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑁 ) → - 𝑁 ∈ ℝ ) |
| 29 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑁 ) → 𝑀 ∈ ℤ ) |
| 30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑁 ) → 0 < - 𝑁 ) |
| 31 |
|
expgt0 |
⊢ ( ( - 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 0 < - 𝑁 ) → 0 < ( - 𝑁 ↑ 𝑀 ) ) |
| 32 |
28 29 30 31
|
syl3anc |
⊢ ( ( 𝜑 ∧ 0 < - 𝑁 ) → 0 < ( - 𝑁 ↑ 𝑀 ) ) |
| 33 |
32
|
ex |
⊢ ( 𝜑 → ( 0 < - 𝑁 → 0 < ( - 𝑁 ↑ 𝑀 ) ) ) |
| 34 |
1
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 35 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑀 / 2 ) ∈ ℤ ) → ( 𝑀 / 2 ) ∈ ℤ ) |
| 36 |
|
zq |
⊢ ( ( 𝑀 / 2 ) ∈ ℤ → ( 𝑀 / 2 ) ∈ ℚ ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑀 / 2 ) ∈ ℤ ) → ( 𝑀 / 2 ) ∈ ℚ ) |
| 38 |
|
qden1elz |
⊢ ( ( 𝑀 / 2 ) ∈ ℚ → ( ( denom ‘ ( 𝑀 / 2 ) ) = 1 ↔ ( 𝑀 / 2 ) ∈ ℤ ) ) |
| 39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑀 / 2 ) ∈ ℤ ) → ( ( denom ‘ ( 𝑀 / 2 ) ) = 1 ↔ ( 𝑀 / 2 ) ∈ ℤ ) ) |
| 40 |
35 39
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑀 / 2 ) ∈ ℤ ) → ( denom ‘ ( 𝑀 / 2 ) ) = 1 ) |
| 41 |
40
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑀 / 2 ) ∈ ℤ ) → ( ( 𝑀 / 2 ) · ( denom ‘ ( 𝑀 / 2 ) ) ) = ( ( 𝑀 / 2 ) · 1 ) ) |
| 42 |
|
qmuldeneqnum |
⊢ ( ( 𝑀 / 2 ) ∈ ℚ → ( ( 𝑀 / 2 ) · ( denom ‘ ( 𝑀 / 2 ) ) ) = ( numer ‘ ( 𝑀 / 2 ) ) ) |
| 43 |
37 42
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑀 / 2 ) ∈ ℤ ) → ( ( 𝑀 / 2 ) · ( denom ‘ ( 𝑀 / 2 ) ) ) = ( numer ‘ ( 𝑀 / 2 ) ) ) |
| 44 |
35
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑀 / 2 ) ∈ ℤ ) → ( 𝑀 / 2 ) ∈ ℂ ) |
| 45 |
44
|
mulridd |
⊢ ( ( 𝜑 ∧ ( 𝑀 / 2 ) ∈ ℤ ) → ( ( 𝑀 / 2 ) · 1 ) = ( 𝑀 / 2 ) ) |
| 46 |
41 43 45
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ ( 𝑀 / 2 ) ∈ ℤ ) → ( 𝑀 / 2 ) = ( numer ‘ ( 𝑀 / 2 ) ) ) |
| 47 |
2
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 48 |
|
2re |
⊢ 2 ∈ ℝ |
| 49 |
48
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 50 |
2
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
| 51 |
|
2pos |
⊢ 0 < 2 |
| 52 |
51
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 53 |
47 49 50 52
|
divgt0d |
⊢ ( 𝜑 → 0 < ( 𝑀 / 2 ) ) |
| 54 |
|
qgt0numnn |
⊢ ( ( ( 𝑀 / 2 ) ∈ ℚ ∧ 0 < ( 𝑀 / 2 ) ) → ( numer ‘ ( 𝑀 / 2 ) ) ∈ ℕ ) |
| 55 |
36 53 54
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑀 / 2 ) ∈ ℤ ) → ( numer ‘ ( 𝑀 / 2 ) ) ∈ ℕ ) |
| 56 |
46 55
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑀 / 2 ) ∈ ℤ ) → ( 𝑀 / 2 ) ∈ ℕ ) |
| 57 |
3 56
|
mtand |
⊢ ( 𝜑 → ¬ ( 𝑀 / 2 ) ∈ ℤ ) |
| 58 |
|
evend2 |
⊢ ( 𝑀 ∈ ℤ → ( 2 ∥ 𝑀 ↔ ( 𝑀 / 2 ) ∈ ℤ ) ) |
| 59 |
5 58
|
syl |
⊢ ( 𝜑 → ( 2 ∥ 𝑀 ↔ ( 𝑀 / 2 ) ∈ ℤ ) ) |
| 60 |
57 59
|
mtbird |
⊢ ( 𝜑 → ¬ 2 ∥ 𝑀 ) |
| 61 |
|
oexpneg |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀 ) → ( - 𝑁 ↑ 𝑀 ) = - ( 𝑁 ↑ 𝑀 ) ) |
| 62 |
34 2 60 61
|
syl3anc |
⊢ ( 𝜑 → ( - 𝑁 ↑ 𝑀 ) = - ( 𝑁 ↑ 𝑀 ) ) |
| 63 |
62
|
breq2d |
⊢ ( 𝜑 → ( 0 < ( - 𝑁 ↑ 𝑀 ) ↔ 0 < - ( 𝑁 ↑ 𝑀 ) ) ) |
| 64 |
63
|
biimpd |
⊢ ( 𝜑 → ( 0 < ( - 𝑁 ↑ 𝑀 ) → 0 < - ( 𝑁 ↑ 𝑀 ) ) ) |
| 65 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 66 |
1 65
|
reexpcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝑀 ) ∈ ℝ ) |
| 67 |
66
|
renegcld |
⊢ ( 𝜑 → - ( 𝑁 ↑ 𝑀 ) ∈ ℝ ) |
| 68 |
11 67
|
lttrid |
⊢ ( 𝜑 → ( 0 < - ( 𝑁 ↑ 𝑀 ) ↔ ¬ ( 0 = - ( 𝑁 ↑ 𝑀 ) ∨ - ( 𝑁 ↑ 𝑀 ) < 0 ) ) ) |
| 69 |
|
pm2.46 |
⊢ ( ¬ ( 0 = - ( 𝑁 ↑ 𝑀 ) ∨ - ( 𝑁 ↑ 𝑀 ) < 0 ) → ¬ - ( 𝑁 ↑ 𝑀 ) < 0 ) |
| 70 |
68 69
|
biimtrdi |
⊢ ( 𝜑 → ( 0 < - ( 𝑁 ↑ 𝑀 ) → ¬ - ( 𝑁 ↑ 𝑀 ) < 0 ) ) |
| 71 |
33 64 70
|
3syld |
⊢ ( 𝜑 → ( 0 < - 𝑁 → ¬ - ( 𝑁 ↑ 𝑀 ) < 0 ) ) |
| 72 |
1
|
lt0neg1d |
⊢ ( 𝜑 → ( 𝑁 < 0 ↔ 0 < - 𝑁 ) ) |
| 73 |
66
|
lt0neg2d |
⊢ ( 𝜑 → ( 0 < ( 𝑁 ↑ 𝑀 ) ↔ - ( 𝑁 ↑ 𝑀 ) < 0 ) ) |
| 74 |
73
|
notbid |
⊢ ( 𝜑 → ( ¬ 0 < ( 𝑁 ↑ 𝑀 ) ↔ ¬ - ( 𝑁 ↑ 𝑀 ) < 0 ) ) |
| 75 |
71 72 74
|
3imtr4d |
⊢ ( 𝜑 → ( 𝑁 < 0 → ¬ 0 < ( 𝑁 ↑ 𝑀 ) ) ) |
| 76 |
26 75
|
jaod |
⊢ ( 𝜑 → ( ( 0 = 𝑁 ∨ 𝑁 < 0 ) → ¬ 0 < ( 𝑁 ↑ 𝑀 ) ) ) |
| 77 |
14 76
|
syl5 |
⊢ ( 𝜑 → ( ¬ ¬ ( 0 = 𝑁 ∨ 𝑁 < 0 ) → ¬ 0 < ( 𝑁 ↑ 𝑀 ) ) ) |
| 78 |
13 77
|
sylbid |
⊢ ( 𝜑 → ( ¬ 0 < 𝑁 → ¬ 0 < ( 𝑁 ↑ 𝑀 ) ) ) |
| 79 |
10 78
|
impcon4bid |
⊢ ( 𝜑 → ( 0 < 𝑁 ↔ 0 < ( 𝑁 ↑ 𝑀 ) ) ) |