| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qeqnumdivden |
⊢ ( 𝐴 ∈ ℚ → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) |
| 2 |
1
|
oveq1d |
⊢ ( 𝐴 ∈ ℚ → ( 𝐴 · ( denom ‘ 𝐴 ) ) = ( ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) · ( denom ‘ 𝐴 ) ) ) |
| 3 |
|
qnumcl |
⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℤ ) |
| 4 |
3
|
zcnd |
⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℂ ) |
| 5 |
|
qdencl |
⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℕ ) |
| 6 |
5
|
nncnd |
⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℂ ) |
| 7 |
5
|
nnne0d |
⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ≠ 0 ) |
| 8 |
4 6 7
|
divcan1d |
⊢ ( 𝐴 ∈ ℚ → ( ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) · ( denom ‘ 𝐴 ) ) = ( numer ‘ 𝐴 ) ) |
| 9 |
2 8
|
eqtrd |
⊢ ( 𝐴 ∈ ℚ → ( 𝐴 · ( denom ‘ 𝐴 ) ) = ( numer ‘ 𝐴 ) ) |