| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qeqnumdivden |
|- ( A e. QQ -> A = ( ( numer ` A ) / ( denom ` A ) ) ) |
| 2 |
1
|
oveq1d |
|- ( A e. QQ -> ( A x. ( denom ` A ) ) = ( ( ( numer ` A ) / ( denom ` A ) ) x. ( denom ` A ) ) ) |
| 3 |
|
qnumcl |
|- ( A e. QQ -> ( numer ` A ) e. ZZ ) |
| 4 |
3
|
zcnd |
|- ( A e. QQ -> ( numer ` A ) e. CC ) |
| 5 |
|
qdencl |
|- ( A e. QQ -> ( denom ` A ) e. NN ) |
| 6 |
5
|
nncnd |
|- ( A e. QQ -> ( denom ` A ) e. CC ) |
| 7 |
5
|
nnne0d |
|- ( A e. QQ -> ( denom ` A ) =/= 0 ) |
| 8 |
4 6 7
|
divcan1d |
|- ( A e. QQ -> ( ( ( numer ` A ) / ( denom ` A ) ) x. ( denom ` A ) ) = ( numer ` A ) ) |
| 9 |
2 8
|
eqtrd |
|- ( A e. QQ -> ( A x. ( denom ` A ) ) = ( numer ` A ) ) |