Metamath Proof Explorer


Theorem oexpreposd

Description: Lemma for dffltz . TODO-SN?: This can be used to show exp11d holds for all integers when the exponent is odd. The more standard -. 2 || M should be used. (Contributed by SN, 4-Mar-2023)

Ref Expression
Hypotheses oexpreposd.n φ N
oexpreposd.m φ M
oexpreposd.1 φ ¬ M 2
Assertion oexpreposd φ 0 < N 0 < N M

Proof

Step Hyp Ref Expression
1 oexpreposd.n φ N
2 oexpreposd.m φ M
3 oexpreposd.1 φ ¬ M 2
4 1 adantr φ 0 < N N
5 2 nnzd φ M
6 5 adantr φ 0 < N M
7 simpr φ 0 < N 0 < N
8 expgt0 N M 0 < N 0 < N M
9 4 6 7 8 syl3anc φ 0 < N 0 < N M
10 9 ex φ 0 < N 0 < N M
11 0red φ 0
12 11 1 lttrid φ 0 < N ¬ 0 = N N < 0
13 12 notbid φ ¬ 0 < N ¬ ¬ 0 = N N < 0
14 notnotr ¬ ¬ 0 = N N < 0 0 = N N < 0
15 0re 0
16 15 ltnri ¬ 0 < 0
17 2 0expd φ 0 M = 0
18 17 breq2d φ 0 < 0 M 0 < 0
19 16 18 mtbiri φ ¬ 0 < 0 M
20 19 adantr φ 0 = N ¬ 0 < 0 M
21 simpr φ 0 = N 0 = N
22 21 eqcomd φ 0 = N N = 0
23 22 oveq1d φ 0 = N N M = 0 M
24 23 breq2d φ 0 = N 0 < N M 0 < 0 M
25 20 24 mtbird φ 0 = N ¬ 0 < N M
26 25 ex φ 0 = N ¬ 0 < N M
27 1 renegcld φ N
28 27 adantr φ 0 < N N
29 5 adantr φ 0 < N M
30 simpr φ 0 < N 0 < N
31 expgt0 N M 0 < N 0 < N M
32 28 29 30 31 syl3anc φ 0 < N 0 < N M
33 32 ex φ 0 < N 0 < N M
34 1 recnd φ N
35 simpr φ M 2 M 2
36 zq M 2 M 2
37 36 adantl φ M 2 M 2
38 qden1elz M 2 denom M 2 = 1 M 2
39 37 38 syl φ M 2 denom M 2 = 1 M 2
40 35 39 mpbird φ M 2 denom M 2 = 1
41 40 oveq2d φ M 2 M 2 denom M 2 = M 2 1
42 qmuldeneqnum M 2 M 2 denom M 2 = numer M 2
43 37 42 syl φ M 2 M 2 denom M 2 = numer M 2
44 35 zcnd φ M 2 M 2
45 44 mulid1d φ M 2 M 2 1 = M 2
46 41 43 45 3eqtr3rd φ M 2 M 2 = numer M 2
47 2 nnred φ M
48 2re 2
49 48 a1i φ 2
50 2 nngt0d φ 0 < M
51 2pos 0 < 2
52 51 a1i φ 0 < 2
53 47 49 50 52 divgt0d φ 0 < M 2
54 qgt0numnn M 2 0 < M 2 numer M 2
55 36 53 54 syl2anr φ M 2 numer M 2
56 46 55 eqeltrd φ M 2 M 2
57 3 56 mtand φ ¬ M 2
58 evend2 M 2 M M 2
59 5 58 syl φ 2 M M 2
60 57 59 mtbird φ ¬ 2 M
61 oexpneg N M ¬ 2 M N M = N M
62 34 2 60 61 syl3anc φ N M = N M
63 62 breq2d φ 0 < N M 0 < N M
64 63 biimpd φ 0 < N M 0 < N M
65 2 nnnn0d φ M 0
66 1 65 reexpcld φ N M
67 66 renegcld φ N M
68 11 67 lttrid φ 0 < N M ¬ 0 = N M N M < 0
69 pm2.46 ¬ 0 = N M N M < 0 ¬ N M < 0
70 68 69 syl6bi φ 0 < N M ¬ N M < 0
71 33 64 70 3syld φ 0 < N ¬ N M < 0
72 1 lt0neg1d φ N < 0 0 < N
73 66 lt0neg2d φ 0 < N M N M < 0
74 73 notbid φ ¬ 0 < N M ¬ N M < 0
75 71 72 74 3imtr4d φ N < 0 ¬ 0 < N M
76 26 75 jaod φ 0 = N N < 0 ¬ 0 < N M
77 14 76 syl5 φ ¬ ¬ 0 = N N < 0 ¬ 0 < N M
78 13 77 sylbid φ ¬ 0 < N ¬ 0 < N M
79 10 78 impcon4bid φ 0 < N 0 < N M