| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oexpreposd.n |
|
| 2 |
|
oexpreposd.m |
|
| 3 |
|
oexpreposd.1 |
|
| 4 |
1
|
adantr |
|
| 5 |
2
|
nnzd |
|
| 6 |
5
|
adantr |
|
| 7 |
|
simpr |
|
| 8 |
|
expgt0 |
|
| 9 |
4 6 7 8
|
syl3anc |
|
| 10 |
9
|
ex |
|
| 11 |
|
0red |
|
| 12 |
11 1
|
lttrid |
|
| 13 |
12
|
notbid |
|
| 14 |
|
notnotr |
|
| 15 |
|
0re |
|
| 16 |
15
|
ltnri |
|
| 17 |
2
|
0expd |
|
| 18 |
17
|
breq2d |
|
| 19 |
16 18
|
mtbiri |
|
| 20 |
19
|
adantr |
|
| 21 |
|
simpr |
|
| 22 |
21
|
eqcomd |
|
| 23 |
22
|
oveq1d |
|
| 24 |
23
|
breq2d |
|
| 25 |
20 24
|
mtbird |
|
| 26 |
25
|
ex |
|
| 27 |
1
|
renegcld |
|
| 28 |
27
|
adantr |
|
| 29 |
5
|
adantr |
|
| 30 |
|
simpr |
|
| 31 |
|
expgt0 |
|
| 32 |
28 29 30 31
|
syl3anc |
|
| 33 |
32
|
ex |
|
| 34 |
1
|
recnd |
|
| 35 |
|
simpr |
|
| 36 |
|
zq |
|
| 37 |
36
|
adantl |
|
| 38 |
|
qden1elz |
|
| 39 |
37 38
|
syl |
|
| 40 |
35 39
|
mpbird |
|
| 41 |
40
|
oveq2d |
|
| 42 |
|
qmuldeneqnum |
|
| 43 |
37 42
|
syl |
|
| 44 |
35
|
zcnd |
|
| 45 |
44
|
mulridd |
|
| 46 |
41 43 45
|
3eqtr3rd |
|
| 47 |
2
|
nnred |
|
| 48 |
|
2re |
|
| 49 |
48
|
a1i |
|
| 50 |
2
|
nngt0d |
|
| 51 |
|
2pos |
|
| 52 |
51
|
a1i |
|
| 53 |
47 49 50 52
|
divgt0d |
|
| 54 |
|
qgt0numnn |
|
| 55 |
36 53 54
|
syl2anr |
|
| 56 |
46 55
|
eqeltrd |
|
| 57 |
3 56
|
mtand |
|
| 58 |
|
evend2 |
|
| 59 |
5 58
|
syl |
|
| 60 |
57 59
|
mtbird |
|
| 61 |
|
oexpneg |
|
| 62 |
34 2 60 61
|
syl3anc |
|
| 63 |
62
|
breq2d |
|
| 64 |
63
|
biimpd |
|
| 65 |
2
|
nnnn0d |
|
| 66 |
1 65
|
reexpcld |
|
| 67 |
66
|
renegcld |
|
| 68 |
11 67
|
lttrid |
|
| 69 |
|
pm2.46 |
|
| 70 |
68 69
|
biimtrdi |
|
| 71 |
33 64 70
|
3syld |
|
| 72 |
1
|
lt0neg1d |
|
| 73 |
66
|
lt0neg2d |
|
| 74 |
73
|
notbid |
|
| 75 |
71 72 74
|
3imtr4d |
|
| 76 |
26 75
|
jaod |
|
| 77 |
14 76
|
syl5 |
|
| 78 |
13 77
|
sylbid |
|
| 79 |
10 78
|
impcon4bid |
|