Step |
Hyp |
Ref |
Expression |
1 |
|
oexpreposd.n |
|
2 |
|
oexpreposd.m |
|
3 |
|
oexpreposd.1 |
|
4 |
1
|
adantr |
|
5 |
2
|
nnzd |
|
6 |
5
|
adantr |
|
7 |
|
simpr |
|
8 |
|
expgt0 |
|
9 |
4 6 7 8
|
syl3anc |
|
10 |
9
|
ex |
|
11 |
|
0red |
|
12 |
11 1
|
lttrid |
|
13 |
12
|
notbid |
|
14 |
|
notnotr |
|
15 |
|
0re |
|
16 |
15
|
ltnri |
|
17 |
2
|
0expd |
|
18 |
17
|
breq2d |
|
19 |
16 18
|
mtbiri |
|
20 |
19
|
adantr |
|
21 |
|
simpr |
|
22 |
21
|
eqcomd |
|
23 |
22
|
oveq1d |
|
24 |
23
|
breq2d |
|
25 |
20 24
|
mtbird |
|
26 |
25
|
ex |
|
27 |
1
|
renegcld |
|
28 |
27
|
adantr |
|
29 |
5
|
adantr |
|
30 |
|
simpr |
|
31 |
|
expgt0 |
|
32 |
28 29 30 31
|
syl3anc |
|
33 |
32
|
ex |
|
34 |
1
|
recnd |
|
35 |
|
simpr |
|
36 |
|
zq |
|
37 |
36
|
adantl |
|
38 |
|
qden1elz |
|
39 |
37 38
|
syl |
|
40 |
35 39
|
mpbird |
|
41 |
40
|
oveq2d |
|
42 |
|
qmuldeneqnum |
|
43 |
37 42
|
syl |
|
44 |
35
|
zcnd |
|
45 |
44
|
mulid1d |
|
46 |
41 43 45
|
3eqtr3rd |
|
47 |
2
|
nnred |
|
48 |
|
2re |
|
49 |
48
|
a1i |
|
50 |
2
|
nngt0d |
|
51 |
|
2pos |
|
52 |
51
|
a1i |
|
53 |
47 49 50 52
|
divgt0d |
|
54 |
|
qgt0numnn |
|
55 |
36 53 54
|
syl2anr |
|
56 |
46 55
|
eqeltrd |
|
57 |
3 56
|
mtand |
|
58 |
|
evend2 |
|
59 |
5 58
|
syl |
|
60 |
57 59
|
mtbird |
|
61 |
|
oexpneg |
|
62 |
34 2 60 61
|
syl3anc |
|
63 |
62
|
breq2d |
|
64 |
63
|
biimpd |
|
65 |
2
|
nnnn0d |
|
66 |
1 65
|
reexpcld |
|
67 |
66
|
renegcld |
|
68 |
11 67
|
lttrid |
|
69 |
|
pm2.46 |
|
70 |
68 69
|
syl6bi |
|
71 |
33 64 70
|
3syld |
|
72 |
1
|
lt0neg1d |
|
73 |
66
|
lt0neg2d |
|
74 |
73
|
notbid |
|
75 |
71 72 74
|
3imtr4d |
|
76 |
26 75
|
jaod |
|
77 |
14 76
|
syl5 |
|
78 |
13 77
|
sylbid |
|
79 |
10 78
|
impcon4bid |
|