Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Arithmetic theorems
addsubeq4com
Next ⟩
sqsumi
Metamath Proof Explorer
Ascii
Unicode
Theorem
addsubeq4com
Description:
Relation between sums and differences.
(Contributed by
Steven Nguyen
, 5-Jan-2023)
Ref
Expression
Assertion
addsubeq4com
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
B
=
C
+
D
↔
A
−
C
=
D
−
B
Proof
Step
Hyp
Ref
Expression
1
eqcom
⊢
A
+
B
=
C
+
D
↔
C
+
D
=
A
+
B
2
addsubeq4
⊢
C
∈
ℂ
∧
D
∈
ℂ
∧
A
∈
ℂ
∧
B
∈
ℂ
→
C
+
D
=
A
+
B
↔
A
−
C
=
D
−
B
3
2
ancoms
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
C
+
D
=
A
+
B
↔
A
−
C
=
D
−
B
4
1
3
syl5bb
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
→
A
+
B
=
C
+
D
↔
A
−
C
=
D
−
B