Metamath Proof Explorer


Theorem laddrotrd

Description: Rotate the variables right in an equation with addition on the left, converting it into a subtraction. Version of mvlladdd with a commuted consequent, and of mvrladdd with a commuted hypothesis. (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses laddrotrd.a ( 𝜑𝐴 ∈ ℂ )
laddrotrd.b ( 𝜑𝐵 ∈ ℂ )
laddrotrd.1 ( 𝜑 → ( 𝐴 + 𝐵 ) = 𝐶 )
Assertion laddrotrd ( 𝜑 → ( 𝐶𝐴 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 laddrotrd.a ( 𝜑𝐴 ∈ ℂ )
2 laddrotrd.b ( 𝜑𝐵 ∈ ℂ )
3 laddrotrd.1 ( 𝜑 → ( 𝐴 + 𝐵 ) = 𝐶 )
4 1 2 3 mvlladdd ( 𝜑𝐵 = ( 𝐶𝐴 ) )
5 4 eqcomd ( 𝜑 → ( 𝐶𝐴 ) = 𝐵 )