Step |
Hyp |
Ref |
Expression |
1 |
|
fltabcoprmex.a |
|- ( ph -> A e. NN ) |
2 |
|
fltabcoprmex.b |
|- ( ph -> B e. NN ) |
3 |
|
fltabcoprmex.c |
|- ( ph -> C e. NN ) |
4 |
|
fltabcoprmex.n |
|- ( ph -> N e. NN0 ) |
5 |
|
fltabcoprmex.1 |
|- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) |
6 |
|
fltaccoprm.1 |
|- ( ph -> ( A gcd B ) = 1 ) |
7 |
2 4
|
nnexpcld |
|- ( ph -> ( B ^ N ) e. NN ) |
8 |
7
|
nncnd |
|- ( ph -> ( B ^ N ) e. CC ) |
9 |
1 4
|
nnexpcld |
|- ( ph -> ( A ^ N ) e. NN ) |
10 |
9
|
nncnd |
|- ( ph -> ( A ^ N ) e. CC ) |
11 |
8 10
|
addcomd |
|- ( ph -> ( ( B ^ N ) + ( A ^ N ) ) = ( ( A ^ N ) + ( B ^ N ) ) ) |
12 |
11 5
|
eqtrd |
|- ( ph -> ( ( B ^ N ) + ( A ^ N ) ) = ( C ^ N ) ) |
13 |
2
|
nnzd |
|- ( ph -> B e. ZZ ) |
14 |
1
|
nnzd |
|- ( ph -> A e. ZZ ) |
15 |
13 14
|
gcdcomd |
|- ( ph -> ( B gcd A ) = ( A gcd B ) ) |
16 |
15 6
|
eqtrd |
|- ( ph -> ( B gcd A ) = 1 ) |
17 |
2 1 3 4 12 16
|
fltaccoprm |
|- ( ph -> ( B gcd C ) = 1 ) |