Step |
Hyp |
Ref |
Expression |
1 |
|
fltabcoprm.a |
|- ( ph -> A e. NN ) |
2 |
|
fltabcoprm.b |
|- ( ph -> B e. NN ) |
3 |
|
fltabcoprm.c |
|- ( ph -> C e. NN ) |
4 |
|
fltabcoprm.2 |
|- ( ph -> ( A gcd C ) = 1 ) |
5 |
|
fltabcoprm.3 |
|- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) |
6 |
|
coprmgcdb |
|- ( ( A e. NN /\ C e. NN ) -> ( A. i e. NN ( ( i || A /\ i || C ) -> i = 1 ) <-> ( A gcd C ) = 1 ) ) |
7 |
1 3 6
|
syl2anc |
|- ( ph -> ( A. i e. NN ( ( i || A /\ i || C ) -> i = 1 ) <-> ( A gcd C ) = 1 ) ) |
8 |
4 7
|
mpbird |
|- ( ph -> A. i e. NN ( ( i || A /\ i || C ) -> i = 1 ) ) |
9 |
|
simprl |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> i || A ) |
10 |
|
simplr |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> i e. NN ) |
11 |
10
|
nnsqcld |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> ( i ^ 2 ) e. NN ) |
12 |
11
|
nnzd |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> ( i ^ 2 ) e. ZZ ) |
13 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> A e. NN ) |
14 |
13
|
nnsqcld |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> ( A ^ 2 ) e. NN ) |
15 |
14
|
nnzd |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> ( A ^ 2 ) e. ZZ ) |
16 |
2
|
ad2antrr |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> B e. NN ) |
17 |
16
|
nnsqcld |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> ( B ^ 2 ) e. NN ) |
18 |
17
|
nnzd |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> ( B ^ 2 ) e. ZZ ) |
19 |
|
dvdssqlem |
|- ( ( i e. NN /\ A e. NN ) -> ( i || A <-> ( i ^ 2 ) || ( A ^ 2 ) ) ) |
20 |
10 13 19
|
syl2anc |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> ( i || A <-> ( i ^ 2 ) || ( A ^ 2 ) ) ) |
21 |
9 20
|
mpbid |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> ( i ^ 2 ) || ( A ^ 2 ) ) |
22 |
|
simprr |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> i || B ) |
23 |
|
dvdssqlem |
|- ( ( i e. NN /\ B e. NN ) -> ( i || B <-> ( i ^ 2 ) || ( B ^ 2 ) ) ) |
24 |
10 16 23
|
syl2anc |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> ( i || B <-> ( i ^ 2 ) || ( B ^ 2 ) ) ) |
25 |
22 24
|
mpbid |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> ( i ^ 2 ) || ( B ^ 2 ) ) |
26 |
12 15 18 21 25
|
dvds2addd |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> ( i ^ 2 ) || ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
27 |
5
|
ad2antrr |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) |
28 |
26 27
|
breqtrd |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> ( i ^ 2 ) || ( C ^ 2 ) ) |
29 |
3
|
ad2antrr |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> C e. NN ) |
30 |
|
dvdssqlem |
|- ( ( i e. NN /\ C e. NN ) -> ( i || C <-> ( i ^ 2 ) || ( C ^ 2 ) ) ) |
31 |
10 29 30
|
syl2anc |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> ( i || C <-> ( i ^ 2 ) || ( C ^ 2 ) ) ) |
32 |
28 31
|
mpbird |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> i || C ) |
33 |
9 32
|
jca |
|- ( ( ( ph /\ i e. NN ) /\ ( i || A /\ i || B ) ) -> ( i || A /\ i || C ) ) |
34 |
33
|
ex |
|- ( ( ph /\ i e. NN ) -> ( ( i || A /\ i || B ) -> ( i || A /\ i || C ) ) ) |
35 |
34
|
imim1d |
|- ( ( ph /\ i e. NN ) -> ( ( ( i || A /\ i || C ) -> i = 1 ) -> ( ( i || A /\ i || B ) -> i = 1 ) ) ) |
36 |
35
|
ralimdva |
|- ( ph -> ( A. i e. NN ( ( i || A /\ i || C ) -> i = 1 ) -> A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) ) ) |
37 |
8 36
|
mpd |
|- ( ph -> A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) ) |
38 |
|
coprmgcdb |
|- ( ( A e. NN /\ B e. NN ) -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) <-> ( A gcd B ) = 1 ) ) |
39 |
1 2 38
|
syl2anc |
|- ( ph -> ( A. i e. NN ( ( i || A /\ i || B ) -> i = 1 ) <-> ( A gcd B ) = 1 ) ) |
40 |
37 39
|
mpbid |
|- ( ph -> ( A gcd B ) = 1 ) |