Metamath Proof Explorer


Theorem fltabcoprm

Description: A counterexample to FLT with A , C coprime also has A , B coprime. Converse of fltaccoprm . (Contributed by SN, 22-Aug-2024)

Ref Expression
Hypotheses fltabcoprm.a φ A
fltabcoprm.b φ B
fltabcoprm.c φ C
fltabcoprm.2 φ A gcd C = 1
fltabcoprm.3 φ A 2 + B 2 = C 2
Assertion fltabcoprm φ A gcd B = 1

Proof

Step Hyp Ref Expression
1 fltabcoprm.a φ A
2 fltabcoprm.b φ B
3 fltabcoprm.c φ C
4 fltabcoprm.2 φ A gcd C = 1
5 fltabcoprm.3 φ A 2 + B 2 = C 2
6 coprmgcdb A C i i A i C i = 1 A gcd C = 1
7 1 3 6 syl2anc φ i i A i C i = 1 A gcd C = 1
8 4 7 mpbird φ i i A i C i = 1
9 simprl φ i i A i B i A
10 simplr φ i i A i B i
11 10 nnsqcld φ i i A i B i 2
12 11 nnzd φ i i A i B i 2
13 1 ad2antrr φ i i A i B A
14 13 nnsqcld φ i i A i B A 2
15 14 nnzd φ i i A i B A 2
16 2 ad2antrr φ i i A i B B
17 16 nnsqcld φ i i A i B B 2
18 17 nnzd φ i i A i B B 2
19 dvdssqlem i A i A i 2 A 2
20 10 13 19 syl2anc φ i i A i B i A i 2 A 2
21 9 20 mpbid φ i i A i B i 2 A 2
22 simprr φ i i A i B i B
23 dvdssqlem i B i B i 2 B 2
24 10 16 23 syl2anc φ i i A i B i B i 2 B 2
25 22 24 mpbid φ i i A i B i 2 B 2
26 12 15 18 21 25 dvds2addd φ i i A i B i 2 A 2 + B 2
27 5 ad2antrr φ i i A i B A 2 + B 2 = C 2
28 26 27 breqtrd φ i i A i B i 2 C 2
29 3 ad2antrr φ i i A i B C
30 dvdssqlem i C i C i 2 C 2
31 10 29 30 syl2anc φ i i A i B i C i 2 C 2
32 28 31 mpbird φ i i A i B i C
33 9 32 jca φ i i A i B i A i C
34 33 ex φ i i A i B i A i C
35 34 imim1d φ i i A i C i = 1 i A i B i = 1
36 35 ralimdva φ i i A i C i = 1 i i A i B i = 1
37 8 36 mpd φ i i A i B i = 1
38 coprmgcdb A B i i A i B i = 1 A gcd B = 1
39 1 2 38 syl2anc φ i i A i B i = 1 A gcd B = 1
40 37 39 mpbid φ A gcd B = 1