Description: A counterexample to FLT with A , B coprime also has A , C coprime. (Contributed by SN, 20-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fltabcoprmex.a | |
|
fltabcoprmex.b | |
||
fltabcoprmex.c | |
||
fltabcoprmex.n | |
||
fltabcoprmex.1 | |
||
fltaccoprm.1 | |
||
Assertion | fltaccoprm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fltabcoprmex.a | |
|
2 | fltabcoprmex.b | |
|
3 | fltabcoprmex.c | |
|
4 | fltabcoprmex.n | |
|
5 | fltabcoprmex.1 | |
|
6 | fltaccoprm.1 | |
|
7 | coprmgcdb | |
|
8 | 1 2 7 | syl2anc | |
9 | 6 8 | mpbird | |
10 | simprl | |
|
11 | simpr | |
|
12 | 11 | nnzd | |
13 | 3 | nnzd | |
14 | 13 | adantr | |
15 | 4 | adantr | |
16 | dvdsexpim | |
|
17 | 12 14 15 16 | syl3anc | |
18 | 1 | nnzd | |
19 | 18 | adantr | |
20 | dvdsexpim | |
|
21 | 12 19 15 20 | syl3anc | |
22 | 17 21 | anim12d | |
23 | 22 | ancomsd | |
24 | 23 | imp | |
25 | 11 15 | nnexpcld | |
26 | 25 | nnzd | |
27 | 26 | adantr | |
28 | 3 4 | nnexpcld | |
29 | 28 | nnzd | |
30 | 29 | ad2antrr | |
31 | 1 4 | nnexpcld | |
32 | 31 | nnzd | |
33 | 32 | ad2antrr | |
34 | dvds2sub | |
|
35 | 27 30 33 34 | syl3anc | |
36 | 24 35 | mpd | |
37 | 1 | nncnd | |
38 | 37 4 | expcld | |
39 | 2 | nncnd | |
40 | 39 4 | expcld | |
41 | 38 40 5 | laddrotrd | |
42 | 41 | ad2antrr | |
43 | 36 42 | breqtrd | |
44 | simplr | |
|
45 | 2 | ad2antrr | |
46 | 3 | nncnd | |
47 | 37 39 46 4 5 | flt0 | |
48 | 47 | ad2antrr | |
49 | dvdsexpnn | |
|
50 | 44 45 48 49 | syl3anc | |
51 | 43 50 | mpbird | |
52 | 10 51 | jca | |
53 | 52 | ex | |
54 | 53 | imim1d | |
55 | 54 | ralimdva | |
56 | 9 55 | mpd | |
57 | coprmgcdb | |
|
58 | 1 3 57 | syl2anc | |
59 | 56 58 | mpbid | |