Metamath Proof Explorer


Theorem fltaccoprm

Description: A counterexample to FLT with A , B coprime also has A , C coprime. (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses fltabcoprmex.a φ A
fltabcoprmex.b φ B
fltabcoprmex.c φ C
fltabcoprmex.n φ N 0
fltabcoprmex.1 φ A N + B N = C N
fltaccoprm.1 φ A gcd B = 1
Assertion fltaccoprm φ A gcd C = 1

Proof

Step Hyp Ref Expression
1 fltabcoprmex.a φ A
2 fltabcoprmex.b φ B
3 fltabcoprmex.c φ C
4 fltabcoprmex.n φ N 0
5 fltabcoprmex.1 φ A N + B N = C N
6 fltaccoprm.1 φ A gcd B = 1
7 coprmgcdb A B i i A i B i = 1 A gcd B = 1
8 1 2 7 syl2anc φ i i A i B i = 1 A gcd B = 1
9 6 8 mpbird φ i i A i B i = 1
10 simprl φ i i A i C i A
11 simpr φ i i
12 11 nnzd φ i i
13 3 nnzd φ C
14 13 adantr φ i C
15 4 adantr φ i N 0
16 dvdsexpim i C N 0 i C i N C N
17 12 14 15 16 syl3anc φ i i C i N C N
18 1 nnzd φ A
19 18 adantr φ i A
20 dvdsexpim i A N 0 i A i N A N
21 12 19 15 20 syl3anc φ i i A i N A N
22 17 21 anim12d φ i i C i A i N C N i N A N
23 22 ancomsd φ i i A i C i N C N i N A N
24 23 imp φ i i A i C i N C N i N A N
25 11 15 nnexpcld φ i i N
26 25 nnzd φ i i N
27 26 adantr φ i i A i C i N
28 3 4 nnexpcld φ C N
29 28 nnzd φ C N
30 29 ad2antrr φ i i A i C C N
31 1 4 nnexpcld φ A N
32 31 nnzd φ A N
33 32 ad2antrr φ i i A i C A N
34 dvds2sub i N C N A N i N C N i N A N i N C N A N
35 27 30 33 34 syl3anc φ i i A i C i N C N i N A N i N C N A N
36 24 35 mpd φ i i A i C i N C N A N
37 1 nncnd φ A
38 37 4 expcld φ A N
39 2 nncnd φ B
40 39 4 expcld φ B N
41 38 40 5 laddrotrd φ C N A N = B N
42 41 ad2antrr φ i i A i C C N A N = B N
43 36 42 breqtrd φ i i A i C i N B N
44 simplr φ i i A i C i
45 2 ad2antrr φ i i A i C B
46 3 nncnd φ C
47 37 39 46 4 5 flt0 φ N
48 47 ad2antrr φ i i A i C N
49 dvdsexpnn i B N i B i N B N
50 44 45 48 49 syl3anc φ i i A i C i B i N B N
51 43 50 mpbird φ i i A i C i B
52 10 51 jca φ i i A i C i A i B
53 52 ex φ i i A i C i A i B
54 53 imim1d φ i i A i B i = 1 i A i C i = 1
55 54 ralimdva φ i i A i B i = 1 i i A i C i = 1
56 9 55 mpd φ i i A i C i = 1
57 coprmgcdb A C i i A i C i = 1 A gcd C = 1
58 1 3 57 syl2anc φ i i A i C i = 1 A gcd C = 1
59 56 58 mpbid φ A gcd C = 1