Metamath Proof Explorer


Theorem fltaccoprm

Description: A counterexample to FLT with A , B coprime also has A , C coprime. (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses fltabcoprmex.a φA
fltabcoprmex.b φB
fltabcoprmex.c φC
fltabcoprmex.n φN0
fltabcoprmex.1 φAN+BN=CN
fltaccoprm.1 φAgcdB=1
Assertion fltaccoprm φAgcdC=1

Proof

Step Hyp Ref Expression
1 fltabcoprmex.a φA
2 fltabcoprmex.b φB
3 fltabcoprmex.c φC
4 fltabcoprmex.n φN0
5 fltabcoprmex.1 φAN+BN=CN
6 fltaccoprm.1 φAgcdB=1
7 coprmgcdb ABiiAiBi=1AgcdB=1
8 1 2 7 syl2anc φiiAiBi=1AgcdB=1
9 6 8 mpbird φiiAiBi=1
10 simprl φiiAiCiA
11 simpr φii
12 11 nnzd φii
13 3 nnzd φC
14 13 adantr φiC
15 4 adantr φiN0
16 dvdsexpim iCN0iCiNCN
17 12 14 15 16 syl3anc φiiCiNCN
18 1 nnzd φA
19 18 adantr φiA
20 dvdsexpim iAN0iAiNAN
21 12 19 15 20 syl3anc φiiAiNAN
22 17 21 anim12d φiiCiAiNCNiNAN
23 22 ancomsd φiiAiCiNCNiNAN
24 23 imp φiiAiCiNCNiNAN
25 11 15 nnexpcld φiiN
26 25 nnzd φiiN
27 26 adantr φiiAiCiN
28 3 4 nnexpcld φCN
29 28 nnzd φCN
30 29 ad2antrr φiiAiCCN
31 1 4 nnexpcld φAN
32 31 nnzd φAN
33 32 ad2antrr φiiAiCAN
34 dvds2sub iNCNANiNCNiNANiNCNAN
35 27 30 33 34 syl3anc φiiAiCiNCNiNANiNCNAN
36 24 35 mpd φiiAiCiNCNAN
37 1 nncnd φA
38 37 4 expcld φAN
39 2 nncnd φB
40 39 4 expcld φBN
41 38 40 5 laddrotrd φCNAN=BN
42 41 ad2antrr φiiAiCCNAN=BN
43 36 42 breqtrd φiiAiCiNBN
44 simplr φiiAiCi
45 2 ad2antrr φiiAiCB
46 3 nncnd φC
47 37 39 46 4 5 flt0 φN
48 47 ad2antrr φiiAiCN
49 dvdsexpnn iBNiBiNBN
50 44 45 48 49 syl3anc φiiAiCiBiNBN
51 43 50 mpbird φiiAiCiB
52 10 51 jca φiiAiCiAiB
53 52 ex φiiAiCiAiB
54 53 imim1d φiiAiBi=1iAiCi=1
55 54 ralimdva φiiAiBi=1iiAiCi=1
56 9 55 mpd φiiAiCi=1
57 coprmgcdb ACiiAiCi=1AgcdC=1
58 1 3 57 syl2anc φiiAiCi=1AgcdC=1
59 56 58 mpbid φAgcdC=1