Metamath Proof Explorer


Theorem fltbccoprm

Description: A counterexample to FLT with A , B coprime also has B , C coprime. Proven from fltaccoprm using commutativity of addition. (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses fltabcoprmex.a φ A
fltabcoprmex.b φ B
fltabcoprmex.c φ C
fltabcoprmex.n φ N 0
fltabcoprmex.1 φ A N + B N = C N
fltaccoprm.1 φ A gcd B = 1
Assertion fltbccoprm φ B gcd C = 1

Proof

Step Hyp Ref Expression
1 fltabcoprmex.a φ A
2 fltabcoprmex.b φ B
3 fltabcoprmex.c φ C
4 fltabcoprmex.n φ N 0
5 fltabcoprmex.1 φ A N + B N = C N
6 fltaccoprm.1 φ A gcd B = 1
7 2 4 nnexpcld φ B N
8 7 nncnd φ B N
9 1 4 nnexpcld φ A N
10 9 nncnd φ A N
11 8 10 addcomd φ B N + A N = A N + B N
12 11 5 eqtrd φ B N + A N = C N
13 2 nnzd φ B
14 1 nnzd φ A
15 13 14 gcdcomd φ B gcd A = A gcd B
16 15 6 eqtrd φ B gcd A = 1
17 2 1 3 4 12 16 fltaccoprm φ B gcd C = 1