Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Basic reductions for Fermat's Last Theorem
fltbccoprm
Metamath Proof Explorer
Description: A counterexample to FLT with A , B coprime also has B , C
coprime. Proven from fltaccoprm using commutativity of addition.
(Contributed by SN , 20-Aug-2024)
Ref
Expression
Hypotheses
fltabcoprmex.a
⊢ φ → A ∈ ℕ
fltabcoprmex.b
⊢ φ → B ∈ ℕ
fltabcoprmex.c
⊢ φ → C ∈ ℕ
fltabcoprmex.n
⊢ φ → N ∈ ℕ 0
fltabcoprmex.1
⊢ φ → A N + B N = C N
fltaccoprm.1
⊢ φ → A gcd B = 1
Assertion
fltbccoprm
⊢ φ → B gcd C = 1
Proof
Step
Hyp
Ref
Expression
1
fltabcoprmex.a
⊢ φ → A ∈ ℕ
2
fltabcoprmex.b
⊢ φ → B ∈ ℕ
3
fltabcoprmex.c
⊢ φ → C ∈ ℕ
4
fltabcoprmex.n
⊢ φ → N ∈ ℕ 0
5
fltabcoprmex.1
⊢ φ → A N + B N = C N
6
fltaccoprm.1
⊢ φ → A gcd B = 1
7
2 4
nnexpcld
⊢ φ → B N ∈ ℕ
8
7
nncnd
⊢ φ → B N ∈ ℂ
9
1 4
nnexpcld
⊢ φ → A N ∈ ℕ
10
9
nncnd
⊢ φ → A N ∈ ℂ
11
8 10
addcomd
⊢ φ → B N + A N = A N + B N
12
11 5
eqtrd
⊢ φ → B N + A N = C N
13
2
nnzd
⊢ φ → B ∈ ℤ
14
1
nnzd
⊢ φ → A ∈ ℤ
15
13 14
gcdcomd
⊢ φ → B gcd A = A gcd B
16
15 6
eqtrd
⊢ φ → B gcd A = 1
17
2 1 3 4 12 16
fltaccoprm
⊢ φ → B gcd C = 1