Description: Deduction associated with dvdsexpim . (Contributed by SN, 21-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvdsexpad.1 | |- ( ph -> A e. ZZ ) |
|
dvdsexpad.2 | |- ( ph -> B e. ZZ ) |
||
dvdsexpad.3 | |- ( ph -> N e. NN0 ) |
||
dvdsexpad.5 | |- ( ph -> A || B ) |
||
Assertion | dvdsexpad | |- ( ph -> ( A ^ N ) || ( B ^ N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsexpad.1 | |- ( ph -> A e. ZZ ) |
|
2 | dvdsexpad.2 | |- ( ph -> B e. ZZ ) |
|
3 | dvdsexpad.3 | |- ( ph -> N e. NN0 ) |
|
4 | dvdsexpad.5 | |- ( ph -> A || B ) |
|
5 | dvdsexpim | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( A || B -> ( A ^ N ) || ( B ^ N ) ) ) |
|
6 | 1 2 3 5 | syl3anc | |- ( ph -> ( A || B -> ( A ^ N ) || ( B ^ N ) ) ) |
7 | 4 6 | mpd | |- ( ph -> ( A ^ N ) || ( B ^ N ) ) |