Metamath Proof Explorer


Theorem dvdsexpad

Description: Deduction associated with dvdsexpim . (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses dvdsexpad.1
|- ( ph -> A e. ZZ )
dvdsexpad.2
|- ( ph -> B e. ZZ )
dvdsexpad.3
|- ( ph -> N e. NN0 )
dvdsexpad.5
|- ( ph -> A || B )
Assertion dvdsexpad
|- ( ph -> ( A ^ N ) || ( B ^ N ) )

Proof

Step Hyp Ref Expression
1 dvdsexpad.1
 |-  ( ph -> A e. ZZ )
2 dvdsexpad.2
 |-  ( ph -> B e. ZZ )
3 dvdsexpad.3
 |-  ( ph -> N e. NN0 )
4 dvdsexpad.5
 |-  ( ph -> A || B )
5 dvdsexpim
 |-  ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( A || B -> ( A ^ N ) || ( B ^ N ) ) )
6 1 2 3 5 syl3anc
 |-  ( ph -> ( A || B -> ( A ^ N ) || ( B ^ N ) ) )
7 4 6 mpd
 |-  ( ph -> ( A ^ N ) || ( B ^ N ) )