Description: Deduction associated with dvdsexpim . (Contributed by SN, 21-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsexpad.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| dvdsexpad.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | ||
| dvdsexpad.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| dvdsexpad.5 | ⊢ ( 𝜑 → 𝐴 ∥ 𝐵 ) | ||
| Assertion | dvdsexpad | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsexpad.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) | |
| 2 | dvdsexpad.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | |
| 3 | dvdsexpad.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 4 | dvdsexpad.5 | ⊢ ( 𝜑 → 𝐴 ∥ 𝐵 ) | |
| 5 | dvdsexpim | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ 𝐵 → ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) | |
| 6 | 1 2 3 5 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 ∥ 𝐵 → ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
| 7 | 4 6 | mpd | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) |