Metamath Proof Explorer


Theorem dvdsexpad

Description: Deduction associated with dvdsexpim . (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses dvdsexpad.1 ( 𝜑𝐴 ∈ ℤ )
dvdsexpad.2 ( 𝜑𝐵 ∈ ℤ )
dvdsexpad.3 ( 𝜑𝑁 ∈ ℕ0 )
dvdsexpad.5 ( 𝜑𝐴𝐵 )
Assertion dvdsexpad ( 𝜑 → ( 𝐴𝑁 ) ∥ ( 𝐵𝑁 ) )

Proof

Step Hyp Ref Expression
1 dvdsexpad.1 ( 𝜑𝐴 ∈ ℤ )
2 dvdsexpad.2 ( 𝜑𝐵 ∈ ℤ )
3 dvdsexpad.3 ( 𝜑𝑁 ∈ ℕ0 )
4 dvdsexpad.5 ( 𝜑𝐴𝐵 )
5 dvdsexpim ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴𝐵 → ( 𝐴𝑁 ) ∥ ( 𝐵𝑁 ) ) )
6 1 2 3 5 syl3anc ( 𝜑 → ( 𝐴𝐵 → ( 𝐴𝑁 ) ∥ ( 𝐵𝑁 ) ) )
7 4 6 mpd ( 𝜑 → ( 𝐴𝑁 ) ∥ ( 𝐵𝑁 ) )