Metamath Proof Explorer


Theorem dvds2addd

Description: Deduction form of dvds2add . (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses dvds2addd.k ( 𝜑𝐾 ∈ ℤ )
dvds2addd.m ( 𝜑𝑀 ∈ ℤ )
dvds2addd.n ( 𝜑𝑁 ∈ ℤ )
dvds2addd.1 ( 𝜑𝐾𝑀 )
dvds2addd.2 ( 𝜑𝐾𝑁 )
Assertion dvds2addd ( 𝜑𝐾 ∥ ( 𝑀 + 𝑁 ) )

Proof

Step Hyp Ref Expression
1 dvds2addd.k ( 𝜑𝐾 ∈ ℤ )
2 dvds2addd.m ( 𝜑𝑀 ∈ ℤ )
3 dvds2addd.n ( 𝜑𝑁 ∈ ℤ )
4 dvds2addd.1 ( 𝜑𝐾𝑀 )
5 dvds2addd.2 ( 𝜑𝐾𝑁 )
6 dvds2add ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾𝑀𝐾𝑁 ) → 𝐾 ∥ ( 𝑀 + 𝑁 ) ) )
7 1 2 3 6 syl3anc ( 𝜑 → ( ( 𝐾𝑀𝐾𝑁 ) → 𝐾 ∥ ( 𝑀 + 𝑁 ) ) )
8 4 5 7 mp2and ( 𝜑𝐾 ∥ ( 𝑀 + 𝑁 ) )