Metamath Proof Explorer


Theorem flt4lem1

Description: Satisfy the antecedent used in several pythagtrip lemmas, with A , C coprime rather than A , B . (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses flt4lem1.a φA
flt4lem1.b φB
flt4lem1.c φC
flt4lem1.1 φ¬2A
flt4lem1.2 φAgcdC=1
flt4lem1.3 φA2+B2=C2
Assertion flt4lem1 φABCA2+B2=C2AgcdB=1¬2A

Proof

Step Hyp Ref Expression
1 flt4lem1.a φA
2 flt4lem1.b φB
3 flt4lem1.c φC
4 flt4lem1.1 φ¬2A
5 flt4lem1.2 φAgcdC=1
6 flt4lem1.3 φA2+B2=C2
7 1 2 3 3jca φABC
8 1 2 3 5 6 fltabcoprm φAgcdB=1
9 8 4 jca φAgcdB=1¬2A
10 7 6 9 3jca φABCA2+B2=C2AgcdB=1¬2A