Metamath Proof Explorer
Description: Satisfy the antecedent used in several pythagtrip lemmas, with
A , C coprime rather than A , B . (Contributed by SN, 21-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
flt4lem1.a |
|
|
|
flt4lem1.b |
|
|
|
flt4lem1.c |
|
|
|
flt4lem1.1 |
|
|
|
flt4lem1.2 |
|
|
|
flt4lem1.3 |
|
|
Assertion |
flt4lem1 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem1.a |
|
2 |
|
flt4lem1.b |
|
3 |
|
flt4lem1.c |
|
4 |
|
flt4lem1.1 |
|
5 |
|
flt4lem1.2 |
|
6 |
|
flt4lem1.3 |
|
7 |
1 2 3
|
3jca |
|
8 |
1 2 3 5 6
|
fltabcoprm |
|
9 |
8 4
|
jca |
|
10 |
7 6 9
|
3jca |
|