Metamath Proof Explorer


Theorem flt4lem1

Description: Satisfy the antecedent used in several pythagtrip lemmas, with A , C coprime rather than A , B . (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses flt4lem1.a
|- ( ph -> A e. NN )
flt4lem1.b
|- ( ph -> B e. NN )
flt4lem1.c
|- ( ph -> C e. NN )
flt4lem1.1
|- ( ph -> -. 2 || A )
flt4lem1.2
|- ( ph -> ( A gcd C ) = 1 )
flt4lem1.3
|- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) )
Assertion flt4lem1
|- ( ph -> ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) )

Proof

Step Hyp Ref Expression
1 flt4lem1.a
 |-  ( ph -> A e. NN )
2 flt4lem1.b
 |-  ( ph -> B e. NN )
3 flt4lem1.c
 |-  ( ph -> C e. NN )
4 flt4lem1.1
 |-  ( ph -> -. 2 || A )
5 flt4lem1.2
 |-  ( ph -> ( A gcd C ) = 1 )
6 flt4lem1.3
 |-  ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) )
7 1 2 3 3jca
 |-  ( ph -> ( A e. NN /\ B e. NN /\ C e. NN ) )
8 1 2 3 5 6 fltabcoprm
 |-  ( ph -> ( A gcd B ) = 1 )
9 8 4 jca
 |-  ( ph -> ( ( A gcd B ) = 1 /\ -. 2 || A ) )
10 7 6 9 3jca
 |-  ( ph -> ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) )