Description: Satisfy the antecedent used in several pythagtrip lemmas, with A , C coprime rather than A , B . (Contributed by SN, 21-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | flt4lem1.a | |- ( ph -> A e. NN ) |
|
flt4lem1.b | |- ( ph -> B e. NN ) |
||
flt4lem1.c | |- ( ph -> C e. NN ) |
||
flt4lem1.1 | |- ( ph -> -. 2 || A ) |
||
flt4lem1.2 | |- ( ph -> ( A gcd C ) = 1 ) |
||
flt4lem1.3 | |- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) |
||
Assertion | flt4lem1 | |- ( ph -> ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem1.a | |- ( ph -> A e. NN ) |
|
2 | flt4lem1.b | |- ( ph -> B e. NN ) |
|
3 | flt4lem1.c | |- ( ph -> C e. NN ) |
|
4 | flt4lem1.1 | |- ( ph -> -. 2 || A ) |
|
5 | flt4lem1.2 | |- ( ph -> ( A gcd C ) = 1 ) |
|
6 | flt4lem1.3 | |- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) |
|
7 | 1 2 3 | 3jca | |- ( ph -> ( A e. NN /\ B e. NN /\ C e. NN ) ) |
8 | 1 2 3 5 6 | fltabcoprm | |- ( ph -> ( A gcd B ) = 1 ) |
9 | 8 4 | jca | |- ( ph -> ( ( A gcd B ) = 1 /\ -. 2 || A ) ) |
10 | 7 6 9 | 3jca | |- ( ph -> ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) ) |