| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flt4lem2.a |
|- ( ph -> A e. NN ) |
| 2 |
|
flt4lem2.b |
|- ( ph -> B e. NN ) |
| 3 |
|
flt4lem2.c |
|- ( ph -> C e. NN ) |
| 4 |
|
flt4lem2.1 |
|- ( ph -> 2 || A ) |
| 5 |
|
flt4lem2.2 |
|- ( ph -> ( A gcd C ) = 1 ) |
| 6 |
|
flt4lem2.3 |
|- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) |
| 7 |
|
breq1 |
|- ( i = 2 -> ( i || A <-> 2 || A ) ) |
| 8 |
|
breq1 |
|- ( i = 2 -> ( i || C <-> 2 || C ) ) |
| 9 |
7 8
|
anbi12d |
|- ( i = 2 -> ( ( i || A /\ i || C ) <-> ( 2 || A /\ 2 || C ) ) ) |
| 10 |
|
2z |
|- 2 e. ZZ |
| 11 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
| 12 |
10 11
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
| 13 |
12
|
a1i |
|- ( ( ph /\ 2 || B ) -> 2 e. ( ZZ>= ` 2 ) ) |
| 14 |
4
|
adantr |
|- ( ( ph /\ 2 || B ) -> 2 || A ) |
| 15 |
10
|
a1i |
|- ( ( ph /\ 2 || B ) -> 2 e. ZZ ) |
| 16 |
|
gcdnncl |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN ) |
| 17 |
1 2 16
|
syl2anc |
|- ( ph -> ( A gcd B ) e. NN ) |
| 18 |
17
|
nnzd |
|- ( ph -> ( A gcd B ) e. ZZ ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ 2 || B ) -> ( A gcd B ) e. ZZ ) |
| 20 |
3
|
adantr |
|- ( ( ph /\ 2 || B ) -> C e. NN ) |
| 21 |
20
|
nnzd |
|- ( ( ph /\ 2 || B ) -> C e. ZZ ) |
| 22 |
|
simpr |
|- ( ( ph /\ 2 || B ) -> 2 || B ) |
| 23 |
1
|
adantr |
|- ( ( ph /\ 2 || B ) -> A e. NN ) |
| 24 |
23
|
nnzd |
|- ( ( ph /\ 2 || B ) -> A e. ZZ ) |
| 25 |
2
|
nnzd |
|- ( ph -> B e. ZZ ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ 2 || B ) -> B e. ZZ ) |
| 27 |
|
dvdsgcd |
|- ( ( 2 e. ZZ /\ A e. ZZ /\ B e. ZZ ) -> ( ( 2 || A /\ 2 || B ) -> 2 || ( A gcd B ) ) ) |
| 28 |
15 24 26 27
|
syl3anc |
|- ( ( ph /\ 2 || B ) -> ( ( 2 || A /\ 2 || B ) -> 2 || ( A gcd B ) ) ) |
| 29 |
14 22 28
|
mp2and |
|- ( ( ph /\ 2 || B ) -> 2 || ( A gcd B ) ) |
| 30 |
|
2nn |
|- 2 e. NN |
| 31 |
30
|
a1i |
|- ( ph -> 2 e. NN ) |
| 32 |
1 2 3 31 6
|
fltdvdsabdvdsc |
|- ( ph -> ( A gcd B ) || C ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ 2 || B ) -> ( A gcd B ) || C ) |
| 34 |
15 19 21 29 33
|
dvdstrd |
|- ( ( ph /\ 2 || B ) -> 2 || C ) |
| 35 |
14 34
|
jca |
|- ( ( ph /\ 2 || B ) -> ( 2 || A /\ 2 || C ) ) |
| 36 |
9 13 35
|
rspcedvdw |
|- ( ( ph /\ 2 || B ) -> E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || C ) ) |
| 37 |
|
ncoprmgcdne1b |
|- ( ( A e. NN /\ C e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || C ) <-> ( A gcd C ) =/= 1 ) ) |
| 38 |
23 20 37
|
syl2anc |
|- ( ( ph /\ 2 || B ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || C ) <-> ( A gcd C ) =/= 1 ) ) |
| 39 |
36 38
|
mpbid |
|- ( ( ph /\ 2 || B ) -> ( A gcd C ) =/= 1 ) |
| 40 |
39
|
ex |
|- ( ph -> ( 2 || B -> ( A gcd C ) =/= 1 ) ) |
| 41 |
40
|
necon2bd |
|- ( ph -> ( ( A gcd C ) = 1 -> -. 2 || B ) ) |
| 42 |
5 41
|
mpd |
|- ( ph -> -. 2 || B ) |