Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem2.a |
|- ( ph -> A e. NN ) |
2 |
|
flt4lem2.b |
|- ( ph -> B e. NN ) |
3 |
|
flt4lem2.c |
|- ( ph -> C e. NN ) |
4 |
|
flt4lem2.1 |
|- ( ph -> 2 || A ) |
5 |
|
flt4lem2.2 |
|- ( ph -> ( A gcd C ) = 1 ) |
6 |
|
flt4lem2.3 |
|- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) |
7 |
|
breq1 |
|- ( i = 2 -> ( i || A <-> 2 || A ) ) |
8 |
|
breq1 |
|- ( i = 2 -> ( i || C <-> 2 || C ) ) |
9 |
7 8
|
anbi12d |
|- ( i = 2 -> ( ( i || A /\ i || C ) <-> ( 2 || A /\ 2 || C ) ) ) |
10 |
|
2z |
|- 2 e. ZZ |
11 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
12 |
10 11
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
13 |
12
|
a1i |
|- ( ( ph /\ 2 || B ) -> 2 e. ( ZZ>= ` 2 ) ) |
14 |
4
|
adantr |
|- ( ( ph /\ 2 || B ) -> 2 || A ) |
15 |
10
|
a1i |
|- ( ( ph /\ 2 || B ) -> 2 e. ZZ ) |
16 |
|
gcdnncl |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN ) |
17 |
1 2 16
|
syl2anc |
|- ( ph -> ( A gcd B ) e. NN ) |
18 |
17
|
nnzd |
|- ( ph -> ( A gcd B ) e. ZZ ) |
19 |
18
|
adantr |
|- ( ( ph /\ 2 || B ) -> ( A gcd B ) e. ZZ ) |
20 |
3
|
adantr |
|- ( ( ph /\ 2 || B ) -> C e. NN ) |
21 |
20
|
nnzd |
|- ( ( ph /\ 2 || B ) -> C e. ZZ ) |
22 |
|
simpr |
|- ( ( ph /\ 2 || B ) -> 2 || B ) |
23 |
1
|
adantr |
|- ( ( ph /\ 2 || B ) -> A e. NN ) |
24 |
23
|
nnzd |
|- ( ( ph /\ 2 || B ) -> A e. ZZ ) |
25 |
2
|
nnzd |
|- ( ph -> B e. ZZ ) |
26 |
25
|
adantr |
|- ( ( ph /\ 2 || B ) -> B e. ZZ ) |
27 |
|
dvdsgcd |
|- ( ( 2 e. ZZ /\ A e. ZZ /\ B e. ZZ ) -> ( ( 2 || A /\ 2 || B ) -> 2 || ( A gcd B ) ) ) |
28 |
15 24 26 27
|
syl3anc |
|- ( ( ph /\ 2 || B ) -> ( ( 2 || A /\ 2 || B ) -> 2 || ( A gcd B ) ) ) |
29 |
14 22 28
|
mp2and |
|- ( ( ph /\ 2 || B ) -> 2 || ( A gcd B ) ) |
30 |
|
2nn |
|- 2 e. NN |
31 |
30
|
a1i |
|- ( ph -> 2 e. NN ) |
32 |
1 2 3 31 6
|
fltdvdsabdvdsc |
|- ( ph -> ( A gcd B ) || C ) |
33 |
32
|
adantr |
|- ( ( ph /\ 2 || B ) -> ( A gcd B ) || C ) |
34 |
15 19 21 29 33
|
dvdstrd |
|- ( ( ph /\ 2 || B ) -> 2 || C ) |
35 |
14 34
|
jca |
|- ( ( ph /\ 2 || B ) -> ( 2 || A /\ 2 || C ) ) |
36 |
9 13 35
|
rspcedvdw |
|- ( ( ph /\ 2 || B ) -> E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || C ) ) |
37 |
|
ncoprmgcdne1b |
|- ( ( A e. NN /\ C e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || C ) <-> ( A gcd C ) =/= 1 ) ) |
38 |
23 20 37
|
syl2anc |
|- ( ( ph /\ 2 || B ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || C ) <-> ( A gcd C ) =/= 1 ) ) |
39 |
36 38
|
mpbid |
|- ( ( ph /\ 2 || B ) -> ( A gcd C ) =/= 1 ) |
40 |
39
|
ex |
|- ( ph -> ( 2 || B -> ( A gcd C ) =/= 1 ) ) |
41 |
40
|
necon2bd |
|- ( ph -> ( ( A gcd C ) = 1 -> -. 2 || B ) ) |
42 |
5 41
|
mpd |
|- ( ph -> -. 2 || B ) |