Metamath Proof Explorer


Theorem flt4lem2

Description: If A is even, B is odd. (Contributed by SN, 22-Aug-2024)

Ref Expression
Hypotheses flt4lem2.a φ A
flt4lem2.b φ B
flt4lem2.c φ C
flt4lem2.1 φ 2 A
flt4lem2.2 φ A gcd C = 1
flt4lem2.3 φ A 2 + B 2 = C 2
Assertion flt4lem2 φ ¬ 2 B

Proof

Step Hyp Ref Expression
1 flt4lem2.a φ A
2 flt4lem2.b φ B
3 flt4lem2.c φ C
4 flt4lem2.1 φ 2 A
5 flt4lem2.2 φ A gcd C = 1
6 flt4lem2.3 φ A 2 + B 2 = C 2
7 breq1 i = 2 i A 2 A
8 breq1 i = 2 i C 2 C
9 7 8 anbi12d i = 2 i A i C 2 A 2 C
10 2z 2
11 uzid 2 2 2
12 10 11 ax-mp 2 2
13 12 a1i φ 2 B 2 2
14 4 adantr φ 2 B 2 A
15 10 a1i φ 2 B 2
16 gcdnncl A B A gcd B
17 1 2 16 syl2anc φ A gcd B
18 17 nnzd φ A gcd B
19 18 adantr φ 2 B A gcd B
20 3 adantr φ 2 B C
21 20 nnzd φ 2 B C
22 simpr φ 2 B 2 B
23 1 adantr φ 2 B A
24 23 nnzd φ 2 B A
25 2 nnzd φ B
26 25 adantr φ 2 B B
27 dvdsgcd 2 A B 2 A 2 B 2 A gcd B
28 15 24 26 27 syl3anc φ 2 B 2 A 2 B 2 A gcd B
29 14 22 28 mp2and φ 2 B 2 A gcd B
30 2nn 2
31 30 a1i φ 2
32 1 2 3 31 6 fltdvdsabdvdsc φ A gcd B C
33 32 adantr φ 2 B A gcd B C
34 15 19 21 29 33 dvdstrd φ 2 B 2 C
35 14 34 jca φ 2 B 2 A 2 C
36 9 13 35 rspcedvdw φ 2 B i 2 i A i C
37 ncoprmgcdne1b A C i 2 i A i C A gcd C 1
38 23 20 37 syl2anc φ 2 B i 2 i A i C A gcd C 1
39 36 38 mpbid φ 2 B A gcd C 1
40 39 ex φ 2 B A gcd C 1
41 40 necon2bd φ A gcd C = 1 ¬ 2 B
42 5 41 mpd φ ¬ 2 B