Metamath Proof Explorer


Theorem flt4lem3

Description: Equivalent to pythagtriplem4 . Show that C + A and C - A are coprime. (Contributed by SN, 22-Aug-2024)

Ref Expression
Hypotheses flt4lem3.a φ A
flt4lem3.b φ B
flt4lem3.c φ C
flt4lem3.1 φ 2 A
flt4lem3.2 φ A gcd C = 1
flt4lem3.3 φ A 2 + B 2 = C 2
Assertion flt4lem3 φ C + A gcd C A = 1

Proof

Step Hyp Ref Expression
1 flt4lem3.a φ A
2 flt4lem3.b φ B
3 flt4lem3.c φ C
4 flt4lem3.1 φ 2 A
5 flt4lem3.2 φ A gcd C = 1
6 flt4lem3.3 φ A 2 + B 2 = C 2
7 3 nnzd φ C
8 1 nnzd φ A
9 7 8 zaddcld φ C + A
10 7 8 zsubcld φ C A
11 9 10 gcdcomd φ C + A gcd C A = C A gcd C + A
12 1 2 3 4 5 6 flt4lem2 φ ¬ 2 B
13 2nn0 2 0
14 13 a1i φ 2 0
15 1 2 3 5 6 fltabcoprm φ A gcd B = 1
16 1 2 3 14 6 15 fltbccoprm φ B gcd C = 1
17 2 nnsqcld φ B 2
18 17 nncnd φ B 2
19 1 nnsqcld φ A 2
20 19 nncnd φ A 2
21 18 20 addcomd φ B 2 + A 2 = A 2 + B 2
22 21 6 eqtrd φ B 2 + A 2 = C 2
23 2 1 3 12 16 22 flt4lem1 φ B A C B 2 + A 2 = C 2 B gcd A = 1 ¬ 2 B
24 pythagtriplem4 B A C B 2 + A 2 = C 2 B gcd A = 1 ¬ 2 B C A gcd C + A = 1
25 23 24 syl φ C A gcd C + A = 1
26 11 25 eqtrd φ C + A gcd C A = 1