Metamath Proof Explorer


Theorem pythagtriplem4

Description: Lemma for pythagtrip . Show that C - B and C + B are relatively prime. (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion pythagtriplem4 ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=1

Proof

Step Hyp Ref Expression
1 simp3r ABCA2+B2=C2AgcdB=1¬2A¬2A
2 nnz CC
3 nnz BB
4 zsubcl CBCB
5 2 3 4 syl2anr BCCB
6 5 3adant1 ABCCB
7 6 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2ACB
8 simp13 ABCA2+B2=C2AgcdB=1¬2AC
9 simp12 ABCA2+B2=C2AgcdB=1¬2AB
10 8 9 nnaddcld ABCA2+B2=C2AgcdB=1¬2AC+B
11 10 nnzd ABCA2+B2=C2AgcdB=1¬2AC+B
12 gcddvds CBC+BCBgcdC+BCBCBgcdC+BC+B
13 7 11 12 syl2anc ABCA2+B2=C2AgcdB=1¬2ACBgcdC+BCBCBgcdC+BC+B
14 13 simprd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+BC+B
15 breq1 CBgcdC+B=2CBgcdC+BC+B2C+B
16 15 biimpd CBgcdC+B=2CBgcdC+BC+B2C+B
17 14 16 mpan9 ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=22C+B
18 2z 2
19 simpl13 ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2C
20 19 nnzd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2C
21 simpl12 ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2B
22 21 nnzd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2B
23 20 22 zaddcld ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2C+B
24 20 22 zsubcld ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2CB
25 dvdsmultr1 2C+BCB2C+B2C+BCB
26 18 23 24 25 mp3an2i ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=22C+B2C+BCB
27 17 26 mpd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=22C+BCB
28 19 nncnd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2C
29 21 nncnd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2B
30 subsq CBC2B2=C+BCB
31 28 29 30 syl2anc ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2C2B2=C+BCB
32 27 31 breqtrrd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=22C2B2
33 simpl2 ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2A2+B2=C2
34 33 oveq1d ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2A2+B2-B2=C2B2
35 simpl11 ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2A
36 35 nnsqcld ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2A2
37 36 nncnd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2A2
38 21 nnsqcld ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2B2
39 38 nncnd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2B2
40 37 39 pncand ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2A2+B2-B2=A2
41 34 40 eqtr3d ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2C2B2=A2
42 32 41 breqtrd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=22A2
43 nnz AA
44 43 3ad2ant1 ABCA
45 44 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AA
46 45 adantr ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2A
47 2prm 2
48 2nn 2
49 prmdvdsexp 2A22A22A
50 47 48 49 mp3an13 A2A22A
51 46 50 syl ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=22A22A
52 42 51 mpbid ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=22A
53 1 52 mtand ABCA2+B2=C2AgcdB=1¬2A¬CBgcdC+B=2
54 neg1z 1
55 gcdaddm 1CBC+BCBgcdC+B=CBgcdC+B+-1CB
56 54 7 11 55 mp3an2i ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=CBgcdC+B+-1CB
57 8 nncnd ABCA2+B2=C2AgcdB=1¬2AC
58 9 nncnd ABCA2+B2=C2AgcdB=1¬2AB
59 pnncan CBBC+B-CB=B+B
60 59 3anidm23 CBC+B-CB=B+B
61 subcl CBCB
62 61 mulm1d CB-1CB=CB
63 62 oveq2d CBC+B+-1CB=C+B+CB
64 addcl CBC+B
65 64 61 negsubd CBC+B+CB=C+B-CB
66 63 65 eqtrd CBC+B+-1CB=C+B-CB
67 2times B2B=B+B
68 67 adantl CB2B=B+B
69 60 66 68 3eqtr4d CBC+B+-1CB=2B
70 69 oveq2d CBCBgcdC+B+-1CB=CBgcd2B
71 57 58 70 syl2anc ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B+-1CB=CBgcd2B
72 56 71 eqtrd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=CBgcd2B
73 9 nnzd ABCA2+B2=C2AgcdB=1¬2AB
74 zmulcl 2B2B
75 18 73 74 sylancr ABCA2+B2=C2AgcdB=1¬2A2B
76 gcddvds CB2BCBgcd2BCBCBgcd2B2B
77 7 75 76 syl2anc ABCA2+B2=C2AgcdB=1¬2ACBgcd2BCBCBgcd2B2B
78 77 simprd ABCA2+B2=C2AgcdB=1¬2ACBgcd2B2B
79 72 78 eqbrtrd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B2B
80 1z 1
81 gcdaddm 1CBC+BCBgcdC+B=CBgcdC+B+1CB
82 80 7 11 81 mp3an2i ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=CBgcdC+B+1CB
83 ppncan CBCC+B+CB=C+C
84 83 3anidm13 CBC+B+CB=C+C
85 61 mullidd CB1CB=CB
86 85 oveq2d CBC+B+1CB=C+B+CB
87 2times C2C=C+C
88 87 adantr CB2C=C+C
89 84 86 88 3eqtr4d CBC+B+1CB=2C
90 57 58 89 syl2anc ABCA2+B2=C2AgcdB=1¬2AC+B+1CB=2C
91 90 oveq2d ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B+1CB=CBgcd2C
92 82 91 eqtrd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=CBgcd2C
93 8 nnzd ABCA2+B2=C2AgcdB=1¬2AC
94 zmulcl 2C2C
95 18 93 94 sylancr ABCA2+B2=C2AgcdB=1¬2A2C
96 gcddvds CB2CCBgcd2CCBCBgcd2C2C
97 7 95 96 syl2anc ABCA2+B2=C2AgcdB=1¬2ACBgcd2CCBCBgcd2C2C
98 97 simprd ABCA2+B2=C2AgcdB=1¬2ACBgcd2C2C
99 92 98 eqbrtrd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B2C
100 nnaddcl CBC+B
101 100 nnne0d CBC+B0
102 101 ancoms BCC+B0
103 102 3adant1 ABCC+B0
104 103 3ad2ant1 ABCA2+B2=C2AgcdB=1¬2AC+B0
105 104 neneqd ABCA2+B2=C2AgcdB=1¬2A¬C+B=0
106 105 intnand ABCA2+B2=C2AgcdB=1¬2A¬CB=0C+B=0
107 gcdn0cl CBC+B¬CB=0C+B=0CBgcdC+B
108 7 11 106 107 syl21anc ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B
109 108 nnzd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B
110 dvdsgcd CBgcdC+B2B2CCBgcdC+B2BCBgcdC+B2CCBgcdC+B2Bgcd2C
111 109 75 95 110 syl3anc ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B2BCBgcdC+B2CCBgcdC+B2Bgcd2C
112 79 99 111 mp2and ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B2Bgcd2C
113 2nn0 20
114 mulgcd 20BC2Bgcd2C=2BgcdC
115 113 73 93 114 mp3an2i ABCA2+B2=C2AgcdB=1¬2A2Bgcd2C=2BgcdC
116 pythagtriplem3 ABCA2+B2=C2AgcdB=1¬2ABgcdC=1
117 116 oveq2d ABCA2+B2=C2AgcdB=1¬2A2BgcdC=21
118 2t1e2 21=2
119 117 118 eqtrdi ABCA2+B2=C2AgcdB=1¬2A2BgcdC=2
120 115 119 eqtrd ABCA2+B2=C2AgcdB=1¬2A2Bgcd2C=2
121 112 120 breqtrd ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B2
122 dvdsprime 2CBgcdC+BCBgcdC+B2CBgcdC+B=2CBgcdC+B=1
123 47 108 122 sylancr ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B2CBgcdC+B=2CBgcdC+B=1
124 121 123 mpbid ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=2CBgcdC+B=1
125 orel1 ¬CBgcdC+B=2CBgcdC+B=2CBgcdC+B=1CBgcdC+B=1
126 53 124 125 sylc ABCA2+B2=C2AgcdB=1¬2ACBgcdC+B=1