| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3r |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ 𝐴 ) |
| 2 |
|
nnz |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℤ ) |
| 3 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
| 4 |
|
zsubcl |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 5 |
2 3 4
|
syl2anr |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 6 |
5
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 7 |
6
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 8 |
|
simp13 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐶 ∈ ℕ ) |
| 9 |
|
simp12 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐵 ∈ ℕ ) |
| 10 |
8 9
|
nnaddcld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 + 𝐵 ) ∈ ℕ ) |
| 11 |
10
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
| 12 |
|
gcddvds |
⊢ ( ( ( 𝐶 − 𝐵 ) ∈ ℤ ∧ ( 𝐶 + 𝐵 ) ∈ ℤ ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 𝐶 − 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 𝐶 + 𝐵 ) ) ) |
| 13 |
7 11 12
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 𝐶 − 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 𝐶 + 𝐵 ) ) ) |
| 14 |
13
|
simprd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 𝐶 + 𝐵 ) ) |
| 15 |
|
breq1 |
⊢ ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 → ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 𝐶 + 𝐵 ) ↔ 2 ∥ ( 𝐶 + 𝐵 ) ) ) |
| 16 |
15
|
biimpd |
⊢ ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 → ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 𝐶 + 𝐵 ) → 2 ∥ ( 𝐶 + 𝐵 ) ) ) |
| 17 |
14 16
|
mpan9 |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 2 ∥ ( 𝐶 + 𝐵 ) ) |
| 18 |
|
2z |
⊢ 2 ∈ ℤ |
| 19 |
|
simpl13 |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐶 ∈ ℕ ) |
| 20 |
19
|
nnzd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐶 ∈ ℤ ) |
| 21 |
|
simpl12 |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐵 ∈ ℕ ) |
| 22 |
21
|
nnzd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐵 ∈ ℤ ) |
| 23 |
20 22
|
zaddcld |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
| 24 |
20 22
|
zsubcld |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 25 |
|
dvdsmultr1 |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝐶 + 𝐵 ) ∈ ℤ ∧ ( 𝐶 − 𝐵 ) ∈ ℤ ) → ( 2 ∥ ( 𝐶 + 𝐵 ) → 2 ∥ ( ( 𝐶 + 𝐵 ) · ( 𝐶 − 𝐵 ) ) ) ) |
| 26 |
18 23 24 25
|
mp3an2i |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 2 ∥ ( 𝐶 + 𝐵 ) → 2 ∥ ( ( 𝐶 + 𝐵 ) · ( 𝐶 − 𝐵 ) ) ) ) |
| 27 |
17 26
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 2 ∥ ( ( 𝐶 + 𝐵 ) · ( 𝐶 − 𝐵 ) ) ) |
| 28 |
19
|
nncnd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐶 ∈ ℂ ) |
| 29 |
21
|
nncnd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐵 ∈ ℂ ) |
| 30 |
|
subsq |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐶 + 𝐵 ) · ( 𝐶 − 𝐵 ) ) ) |
| 31 |
28 29 30
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐶 + 𝐵 ) · ( 𝐶 − 𝐵 ) ) ) |
| 32 |
27 31
|
breqtrrd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 2 ∥ ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
| 33 |
|
simpl2 |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |
| 34 |
33
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
| 35 |
|
simpl11 |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐴 ∈ ℕ ) |
| 36 |
35
|
nnsqcld |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 𝐴 ↑ 2 ) ∈ ℕ ) |
| 37 |
36
|
nncnd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 38 |
21
|
nnsqcld |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 𝐵 ↑ 2 ) ∈ ℕ ) |
| 39 |
38
|
nncnd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 40 |
37 39
|
pncand |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( 𝐵 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
| 41 |
34 40
|
eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( ( 𝐶 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( 𝐴 ↑ 2 ) ) |
| 42 |
32 41
|
breqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 2 ∥ ( 𝐴 ↑ 2 ) ) |
| 43 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
| 44 |
43
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 45 |
44
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐴 ∈ ℤ ) |
| 46 |
45
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 𝐴 ∈ ℤ ) |
| 47 |
|
2prm |
⊢ 2 ∈ ℙ |
| 48 |
|
2nn |
⊢ 2 ∈ ℕ |
| 49 |
|
prmdvdsexp |
⊢ ( ( 2 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 2 ∈ ℕ ) → ( 2 ∥ ( 𝐴 ↑ 2 ) ↔ 2 ∥ 𝐴 ) ) |
| 50 |
47 48 49
|
mp3an13 |
⊢ ( 𝐴 ∈ ℤ → ( 2 ∥ ( 𝐴 ↑ 2 ) ↔ 2 ∥ 𝐴 ) ) |
| 51 |
46 50
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → ( 2 ∥ ( 𝐴 ↑ 2 ) ↔ 2 ∥ 𝐴 ) ) |
| 52 |
42 51
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) → 2 ∥ 𝐴 ) |
| 53 |
1 52
|
mtand |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ) |
| 54 |
|
neg1z |
⊢ - 1 ∈ ℤ |
| 55 |
|
gcdaddm |
⊢ ( ( - 1 ∈ ℤ ∧ ( 𝐶 − 𝐵 ) ∈ ℤ ∧ ( 𝐶 + 𝐵 ) ∈ ℤ ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd ( ( 𝐶 + 𝐵 ) + ( - 1 · ( 𝐶 − 𝐵 ) ) ) ) ) |
| 56 |
54 7 11 55
|
mp3an2i |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd ( ( 𝐶 + 𝐵 ) + ( - 1 · ( 𝐶 − 𝐵 ) ) ) ) ) |
| 57 |
8
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
| 58 |
9
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐵 ∈ ℂ ) |
| 59 |
|
pnncan |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) − ( 𝐶 − 𝐵 ) ) = ( 𝐵 + 𝐵 ) ) |
| 60 |
59
|
3anidm23 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) − ( 𝐶 − 𝐵 ) ) = ( 𝐵 + 𝐵 ) ) |
| 61 |
|
subcl |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 − 𝐵 ) ∈ ℂ ) |
| 62 |
61
|
mulm1d |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 1 · ( 𝐶 − 𝐵 ) ) = - ( 𝐶 − 𝐵 ) ) |
| 63 |
62
|
oveq2d |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( - 1 · ( 𝐶 − 𝐵 ) ) ) = ( ( 𝐶 + 𝐵 ) + - ( 𝐶 − 𝐵 ) ) ) |
| 64 |
|
addcl |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 + 𝐵 ) ∈ ℂ ) |
| 65 |
64 61
|
negsubd |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + - ( 𝐶 − 𝐵 ) ) = ( ( 𝐶 + 𝐵 ) − ( 𝐶 − 𝐵 ) ) ) |
| 66 |
63 65
|
eqtrd |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( - 1 · ( 𝐶 − 𝐵 ) ) ) = ( ( 𝐶 + 𝐵 ) − ( 𝐶 − 𝐵 ) ) ) |
| 67 |
|
2times |
⊢ ( 𝐵 ∈ ℂ → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
| 68 |
67
|
adantl |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
| 69 |
60 66 68
|
3eqtr4d |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( - 1 · ( 𝐶 − 𝐵 ) ) ) = ( 2 · 𝐵 ) ) |
| 70 |
69
|
oveq2d |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 − 𝐵 ) gcd ( ( 𝐶 + 𝐵 ) + ( - 1 · ( 𝐶 − 𝐵 ) ) ) ) = ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ) |
| 71 |
57 58 70
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( ( 𝐶 + 𝐵 ) + ( - 1 · ( 𝐶 − 𝐵 ) ) ) ) = ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ) |
| 72 |
56 71
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ) |
| 73 |
9
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐵 ∈ ℤ ) |
| 74 |
|
zmulcl |
⊢ ( ( 2 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 2 · 𝐵 ) ∈ ℤ ) |
| 75 |
18 73 74
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 · 𝐵 ) ∈ ℤ ) |
| 76 |
|
gcddvds |
⊢ ( ( ( 𝐶 − 𝐵 ) ∈ ℤ ∧ ( 2 · 𝐵 ) ∈ ℤ ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ∥ ( 𝐶 − 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ∥ ( 2 · 𝐵 ) ) ) |
| 77 |
7 75 76
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ∥ ( 𝐶 − 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ∥ ( 2 · 𝐵 ) ) ) |
| 78 |
77
|
simprd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐵 ) ) ∥ ( 2 · 𝐵 ) ) |
| 79 |
72 78
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 2 · 𝐵 ) ) |
| 80 |
|
1z |
⊢ 1 ∈ ℤ |
| 81 |
|
gcdaddm |
⊢ ( ( 1 ∈ ℤ ∧ ( 𝐶 − 𝐵 ) ∈ ℤ ∧ ( 𝐶 + 𝐵 ) ∈ ℤ ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd ( ( 𝐶 + 𝐵 ) + ( 1 · ( 𝐶 − 𝐵 ) ) ) ) ) |
| 82 |
80 7 11 81
|
mp3an2i |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd ( ( 𝐶 + 𝐵 ) + ( 1 · ( 𝐶 − 𝐵 ) ) ) ) ) |
| 83 |
|
ppncan |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) = ( 𝐶 + 𝐶 ) ) |
| 84 |
83
|
3anidm13 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) = ( 𝐶 + 𝐶 ) ) |
| 85 |
61
|
mullidd |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 · ( 𝐶 − 𝐵 ) ) = ( 𝐶 − 𝐵 ) ) |
| 86 |
85
|
oveq2d |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( 1 · ( 𝐶 − 𝐵 ) ) ) = ( ( 𝐶 + 𝐵 ) + ( 𝐶 − 𝐵 ) ) ) |
| 87 |
|
2times |
⊢ ( 𝐶 ∈ ℂ → ( 2 · 𝐶 ) = ( 𝐶 + 𝐶 ) ) |
| 88 |
87
|
adantr |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · 𝐶 ) = ( 𝐶 + 𝐶 ) ) |
| 89 |
84 86 88
|
3eqtr4d |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 + 𝐵 ) + ( 1 · ( 𝐶 − 𝐵 ) ) ) = ( 2 · 𝐶 ) ) |
| 90 |
57 58 89
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 + 𝐵 ) + ( 1 · ( 𝐶 − 𝐵 ) ) ) = ( 2 · 𝐶 ) ) |
| 91 |
90
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( ( 𝐶 + 𝐵 ) + ( 1 · ( 𝐶 − 𝐵 ) ) ) ) = ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐶 ) ) ) |
| 92 |
82 91
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐶 ) ) ) |
| 93 |
8
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐶 ∈ ℤ ) |
| 94 |
|
zmulcl |
⊢ ( ( 2 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 2 · 𝐶 ) ∈ ℤ ) |
| 95 |
18 93 94
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 · 𝐶 ) ∈ ℤ ) |
| 96 |
|
gcddvds |
⊢ ( ( ( 𝐶 − 𝐵 ) ∈ ℤ ∧ ( 2 · 𝐶 ) ∈ ℤ ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐶 ) ) ∥ ( 𝐶 − 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐶 ) ) ∥ ( 2 · 𝐶 ) ) ) |
| 97 |
7 95 96
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐶 ) ) ∥ ( 𝐶 − 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐶 ) ) ∥ ( 2 · 𝐶 ) ) ) |
| 98 |
97
|
simprd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 2 · 𝐶 ) ) ∥ ( 2 · 𝐶 ) ) |
| 99 |
92 98
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 2 · 𝐶 ) ) |
| 100 |
|
nnaddcl |
⊢ ( ( 𝐶 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ∈ ℕ ) |
| 101 |
100
|
nnne0d |
⊢ ( ( 𝐶 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ≠ 0 ) |
| 102 |
101
|
ancoms |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ≠ 0 ) |
| 103 |
102
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ≠ 0 ) |
| 104 |
103
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 + 𝐵 ) ≠ 0 ) |
| 105 |
104
|
neneqd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ ( 𝐶 + 𝐵 ) = 0 ) |
| 106 |
105
|
intnand |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ ( ( 𝐶 − 𝐵 ) = 0 ∧ ( 𝐶 + 𝐵 ) = 0 ) ) |
| 107 |
|
gcdn0cl |
⊢ ( ( ( ( 𝐶 − 𝐵 ) ∈ ℤ ∧ ( 𝐶 + 𝐵 ) ∈ ℤ ) ∧ ¬ ( ( 𝐶 − 𝐵 ) = 0 ∧ ( 𝐶 + 𝐵 ) = 0 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∈ ℕ ) |
| 108 |
7 11 106 107
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∈ ℕ ) |
| 109 |
108
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∈ ℤ ) |
| 110 |
|
dvdsgcd |
⊢ ( ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∈ ℤ ∧ ( 2 · 𝐵 ) ∈ ℤ ∧ ( 2 · 𝐶 ) ∈ ℤ ) → ( ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 2 · 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 2 · 𝐶 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( ( 2 · 𝐵 ) gcd ( 2 · 𝐶 ) ) ) ) |
| 111 |
109 75 95 110
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 2 · 𝐵 ) ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( 2 · 𝐶 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( ( 2 · 𝐵 ) gcd ( 2 · 𝐶 ) ) ) ) |
| 112 |
79 99 111
|
mp2and |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ ( ( 2 · 𝐵 ) gcd ( 2 · 𝐶 ) ) ) |
| 113 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 114 |
|
mulgcd |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 2 · 𝐵 ) gcd ( 2 · 𝐶 ) ) = ( 2 · ( 𝐵 gcd 𝐶 ) ) ) |
| 115 |
113 73 93 114
|
mp3an2i |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 2 · 𝐵 ) gcd ( 2 · 𝐶 ) ) = ( 2 · ( 𝐵 gcd 𝐶 ) ) ) |
| 116 |
|
pythagtriplem3 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐵 gcd 𝐶 ) = 1 ) |
| 117 |
116
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 · ( 𝐵 gcd 𝐶 ) ) = ( 2 · 1 ) ) |
| 118 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 119 |
117 118
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 · ( 𝐵 gcd 𝐶 ) ) = 2 ) |
| 120 |
115 119
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 2 · 𝐵 ) gcd ( 2 · 𝐶 ) ) = 2 ) |
| 121 |
112 120
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ 2 ) |
| 122 |
|
dvdsprime |
⊢ ( ( 2 ∈ ℙ ∧ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∈ ℕ ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ 2 ↔ ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ∨ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 1 ) ) ) |
| 123 |
47 108 122
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) ∥ 2 ↔ ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ∨ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 1 ) ) ) |
| 124 |
121 123
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ∨ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 1 ) ) |
| 125 |
|
orel1 |
⊢ ( ¬ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 → ( ( ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 2 ∨ ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 1 ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 1 ) ) |
| 126 |
53 124 125
|
sylc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd ( 𝐶 + 𝐵 ) ) = 1 ) |