| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  →  ( ( 𝐵 ↑ 2 )  gcd  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) )  =  ( ( 𝐵 ↑ 2 )  gcd  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) )  →  ( ( 𝐵 ↑ 2 )  gcd  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) )  =  ( ( 𝐵 ↑ 2 )  gcd  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 3 |  | nnz | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℤ ) | 
						
							| 4 |  | zsqcl | ⊢ ( 𝐵  ∈  ℤ  →  ( 𝐵 ↑ 2 )  ∈  ℤ ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝐵  ∈  ℕ  →  ( 𝐵 ↑ 2 )  ∈  ℤ ) | 
						
							| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐵 ↑ 2 )  ∈  ℤ ) | 
						
							| 7 |  | nnz | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℤ ) | 
						
							| 8 |  | zsqcl | ⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴 ↑ 2 )  ∈  ℤ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐴 ↑ 2 )  ∈  ℤ ) | 
						
							| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐴 ↑ 2 )  ∈  ℤ ) | 
						
							| 11 |  | gcdadd | ⊢ ( ( ( 𝐵 ↑ 2 )  ∈  ℤ  ∧  ( 𝐴 ↑ 2 )  ∈  ℤ )  →  ( ( 𝐵 ↑ 2 )  gcd  ( 𝐴 ↑ 2 ) )  =  ( ( 𝐵 ↑ 2 )  gcd  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 12 | 6 10 11 | syl2anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( ( 𝐵 ↑ 2 )  gcd  ( 𝐴 ↑ 2 ) )  =  ( ( 𝐵 ↑ 2 )  gcd  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 13 | 6 10 | gcdcomd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( ( 𝐵 ↑ 2 )  gcd  ( 𝐴 ↑ 2 ) )  =  ( ( 𝐴 ↑ 2 )  gcd  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 14 | 12 13 | eqtr3d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( ( 𝐵 ↑ 2 )  gcd  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) )  =  ( ( 𝐴 ↑ 2 )  gcd  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) )  →  ( ( 𝐵 ↑ 2 )  gcd  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) )  =  ( ( 𝐴 ↑ 2 )  gcd  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 16 | 2 15 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) )  →  ( ( 𝐵 ↑ 2 )  gcd  ( 𝐶 ↑ 2 ) )  =  ( ( 𝐴 ↑ 2 )  gcd  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 17 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) )  →  𝐵  ∈  ℕ ) | 
						
							| 18 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) )  →  𝐶  ∈  ℕ ) | 
						
							| 19 |  | sqgcd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( ( 𝐵  gcd  𝐶 ) ↑ 2 )  =  ( ( 𝐵 ↑ 2 )  gcd  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 20 | 17 18 19 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) )  →  ( ( 𝐵  gcd  𝐶 ) ↑ 2 )  =  ( ( 𝐵 ↑ 2 )  gcd  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 21 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) )  →  𝐴  ∈  ℕ ) | 
						
							| 22 |  | sqgcd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  =  ( ( 𝐴 ↑ 2 )  gcd  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 23 | 21 17 22 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  =  ( ( 𝐴 ↑ 2 )  gcd  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 24 | 16 20 23 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) )  →  ( ( 𝐵  gcd  𝐶 ) ↑ 2 )  =  ( ( 𝐴  gcd  𝐵 ) ↑ 2 ) ) | 
						
							| 25 | 24 | 3adant3 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( 𝐵  gcd  𝐶 ) ↑ 2 )  =  ( ( 𝐴  gcd  𝐵 ) ↑ 2 ) ) | 
						
							| 26 |  | simp3l | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 𝐴  gcd  𝐵 )  =  1 ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 28 | 25 27 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( 𝐵  gcd  𝐶 ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 29 | 3 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  𝐵  ∈  ℤ ) | 
						
							| 30 |  | nnz | ⊢ ( 𝐶  ∈  ℕ  →  𝐶  ∈  ℤ ) | 
						
							| 31 | 30 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  𝐶  ∈  ℤ ) | 
						
							| 32 | 29 31 | gcdcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐵  gcd  𝐶 )  ∈  ℕ0 ) | 
						
							| 33 | 32 | nn0red | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  ( 𝐵  gcd  𝐶 )  ∈  ℝ ) | 
						
							| 34 | 33 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 𝐵  gcd  𝐶 )  ∈  ℝ ) | 
						
							| 35 | 32 | nn0ge0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  →  0  ≤  ( 𝐵  gcd  𝐶 ) ) | 
						
							| 36 | 35 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  0  ≤  ( 𝐵  gcd  𝐶 ) ) | 
						
							| 37 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 38 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 39 |  | sq11 | ⊢ ( ( ( ( 𝐵  gcd  𝐶 )  ∈  ℝ  ∧  0  ≤  ( 𝐵  gcd  𝐶 ) )  ∧  ( 1  ∈  ℝ  ∧  0  ≤  1 ) )  →  ( ( ( 𝐵  gcd  𝐶 ) ↑ 2 )  =  ( 1 ↑ 2 )  ↔  ( 𝐵  gcd  𝐶 )  =  1 ) ) | 
						
							| 40 | 37 38 39 | mpanr12 | ⊢ ( ( ( 𝐵  gcd  𝐶 )  ∈  ℝ  ∧  0  ≤  ( 𝐵  gcd  𝐶 ) )  →  ( ( ( 𝐵  gcd  𝐶 ) ↑ 2 )  =  ( 1 ↑ 2 )  ↔  ( 𝐵  gcd  𝐶 )  =  1 ) ) | 
						
							| 41 | 34 36 40 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( ( ( 𝐵  gcd  𝐶 ) ↑ 2 )  =  ( 1 ↑ 2 )  ↔  ( 𝐵  gcd  𝐶 )  =  1 ) ) | 
						
							| 42 | 28 41 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝐶  ∈  ℕ )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ∧  ( ( 𝐴  gcd  𝐵 )  =  1  ∧  ¬  2  ∥  𝐴 ) )  →  ( 𝐵  gcd  𝐶 )  =  1 ) |