| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) -> ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( B ^ 2 ) gcd ( C ^ 2 ) ) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( B ^ 2 ) gcd ( C ^ 2 ) ) ) | 
						
							| 3 |  | nnz |  |-  ( B e. NN -> B e. ZZ ) | 
						
							| 4 |  | zsqcl |  |-  ( B e. ZZ -> ( B ^ 2 ) e. ZZ ) | 
						
							| 5 | 3 4 | syl |  |-  ( B e. NN -> ( B ^ 2 ) e. ZZ ) | 
						
							| 6 | 5 | 3ad2ant2 |  |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) e. ZZ ) | 
						
							| 7 |  | nnz |  |-  ( A e. NN -> A e. ZZ ) | 
						
							| 8 |  | zsqcl |  |-  ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) | 
						
							| 9 | 7 8 | syl |  |-  ( A e. NN -> ( A ^ 2 ) e. ZZ ) | 
						
							| 10 | 9 | 3ad2ant1 |  |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A ^ 2 ) e. ZZ ) | 
						
							| 11 |  | gcdadd |  |-  ( ( ( B ^ 2 ) e. ZZ /\ ( A ^ 2 ) e. ZZ ) -> ( ( B ^ 2 ) gcd ( A ^ 2 ) ) = ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) | 
						
							| 12 | 6 10 11 | syl2anc |  |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( B ^ 2 ) gcd ( A ^ 2 ) ) = ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) | 
						
							| 13 | 6 10 | gcdcomd |  |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( B ^ 2 ) gcd ( A ^ 2 ) ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) | 
						
							| 14 | 12 13 | eqtr3d |  |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B ^ 2 ) gcd ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) | 
						
							| 16 | 2 15 | eqtr3d |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B ^ 2 ) gcd ( C ^ 2 ) ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) | 
						
							| 17 |  | simpl2 |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> B e. NN ) | 
						
							| 18 |  | simpl3 |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> C e. NN ) | 
						
							| 19 |  | sqgcd |  |-  ( ( B e. NN /\ C e. NN ) -> ( ( B gcd C ) ^ 2 ) = ( ( B ^ 2 ) gcd ( C ^ 2 ) ) ) | 
						
							| 20 | 17 18 19 | syl2anc |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B gcd C ) ^ 2 ) = ( ( B ^ 2 ) gcd ( C ^ 2 ) ) ) | 
						
							| 21 |  | simpl1 |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> A e. NN ) | 
						
							| 22 |  | sqgcd |  |-  ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) | 
						
							| 23 | 21 17 22 | syl2anc |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) | 
						
							| 24 | 16 20 23 | 3eqtr4d |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> ( ( B gcd C ) ^ 2 ) = ( ( A gcd B ) ^ 2 ) ) | 
						
							| 25 | 24 | 3adant3 |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( B gcd C ) ^ 2 ) = ( ( A gcd B ) ^ 2 ) ) | 
						
							| 26 |  | simp3l |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A gcd B ) = 1 ) | 
						
							| 27 | 26 | oveq1d |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( A gcd B ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 28 | 25 27 | eqtrd |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( B gcd C ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 29 | 3 | 3ad2ant2 |  |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. ZZ ) | 
						
							| 30 |  | nnz |  |-  ( C e. NN -> C e. ZZ ) | 
						
							| 31 | 30 | 3ad2ant3 |  |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. ZZ ) | 
						
							| 32 | 29 31 | gcdcld |  |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B gcd C ) e. NN0 ) | 
						
							| 33 | 32 | nn0red |  |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B gcd C ) e. RR ) | 
						
							| 34 | 33 | 3ad2ant1 |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( B gcd C ) e. RR ) | 
						
							| 35 | 32 | nn0ge0d |  |-  ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 <_ ( B gcd C ) ) | 
						
							| 36 | 35 | 3ad2ant1 |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( B gcd C ) ) | 
						
							| 37 |  | 1re |  |-  1 e. RR | 
						
							| 38 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 39 |  | sq11 |  |-  ( ( ( ( B gcd C ) e. RR /\ 0 <_ ( B gcd C ) ) /\ ( 1 e. RR /\ 0 <_ 1 ) ) -> ( ( ( B gcd C ) ^ 2 ) = ( 1 ^ 2 ) <-> ( B gcd C ) = 1 ) ) | 
						
							| 40 | 37 38 39 | mpanr12 |  |-  ( ( ( B gcd C ) e. RR /\ 0 <_ ( B gcd C ) ) -> ( ( ( B gcd C ) ^ 2 ) = ( 1 ^ 2 ) <-> ( B gcd C ) = 1 ) ) | 
						
							| 41 | 34 36 40 | syl2anc |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( B gcd C ) ^ 2 ) = ( 1 ^ 2 ) <-> ( B gcd C ) = 1 ) ) | 
						
							| 42 | 28 41 | mpbid |  |-  ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( B gcd C ) = 1 ) |