| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1z |
|- 1 e. ZZ |
| 2 |
|
gcdaddm |
|- ( ( 1 e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( M gcd ( N + ( 1 x. M ) ) ) ) |
| 3 |
1 2
|
mp3an1 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( M gcd ( N + ( 1 x. M ) ) ) ) |
| 4 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
| 5 |
|
mullid |
|- ( M e. CC -> ( 1 x. M ) = M ) |
| 6 |
5
|
oveq2d |
|- ( M e. CC -> ( N + ( 1 x. M ) ) = ( N + M ) ) |
| 7 |
6
|
oveq2d |
|- ( M e. CC -> ( M gcd ( N + ( 1 x. M ) ) ) = ( M gcd ( N + M ) ) ) |
| 8 |
4 7
|
syl |
|- ( M e. ZZ -> ( M gcd ( N + ( 1 x. M ) ) ) = ( M gcd ( N + M ) ) ) |
| 9 |
8
|
adantr |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd ( N + ( 1 x. M ) ) ) = ( M gcd ( N + M ) ) ) |
| 10 |
3 9
|
eqtrd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( M gcd ( N + M ) ) ) |