Description: Lemma for pythagtrip . Show that C and B are relatively prime under some conditions. (Contributed by Scott Fenton, 8-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pythagtriplem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | adantl | |
3 | nnz | |
|
4 | zsqcl | |
|
5 | 3 4 | syl | |
6 | 5 | 3ad2ant2 | |
7 | nnz | |
|
8 | zsqcl | |
|
9 | 7 8 | syl | |
10 | 9 | 3ad2ant1 | |
11 | gcdadd | |
|
12 | 6 10 11 | syl2anc | |
13 | 6 10 | gcdcomd | |
14 | 12 13 | eqtr3d | |
15 | 14 | adantr | |
16 | 2 15 | eqtr3d | |
17 | simpl2 | |
|
18 | simpl3 | |
|
19 | sqgcd | |
|
20 | 17 18 19 | syl2anc | |
21 | simpl1 | |
|
22 | sqgcd | |
|
23 | 21 17 22 | syl2anc | |
24 | 16 20 23 | 3eqtr4d | |
25 | 24 | 3adant3 | |
26 | simp3l | |
|
27 | 26 | oveq1d | |
28 | 25 27 | eqtrd | |
29 | 3 | 3ad2ant2 | |
30 | nnz | |
|
31 | 30 | 3ad2ant3 | |
32 | 29 31 | gcdcld | |
33 | 32 | nn0red | |
34 | 33 | 3ad2ant1 | |
35 | 32 | nn0ge0d | |
36 | 35 | 3ad2ant1 | |
37 | 1re | |
|
38 | 0le1 | |
|
39 | sq11 | |
|
40 | 37 38 39 | mpanr12 | |
41 | 34 36 40 | syl2anc | |
42 | 28 41 | mpbid | |